

GX3700/GX3700e

GX3701/GX3702/GX3788

User Configurable FPGA and Expansion Boards

GXFPGA Software

User’s Guide

Last Updated: December 16, 2016

GX3700 User’s Guide i

Safety and Handling

Each product shipped by Marvin Test Solutions is carefully inspected and tested prior to shipping. The shipping box

provides protection during shipment, and can be used for storage of both the hardware and the software when they

are not in use.

The circuit boards are extremely delicate and require care in handling and installation. Do not remove the boards

from their protective plastic coverings or from the shipping box until you are ready to install the boards into your

computer.

If a board is removed from the computer for any reason, be sure to store it in its original shipping box. Do not store

boards on top of workbenches or other areas where they might be susceptible to damage or exposure to strong

electromagnetic or electrostatic fields. Store circuit boards in protective anti-electrostatic wrapping and away from

electromagnetic fields.

Be sure to make a single copy of the software diskette for installation. Store the original diskette in a safe place

away from electromagnetic or electrostatic fields. Return compact disks (CD) to their protective case or sleeve and

store in the original shipping box or other suitable location.

Warranty

Marvin Test Solutions products are warranted against defects in materials and workmanship for a period of 12

months. Software products and accessories are warranted for 3 months. Unless covered by software support or

maintenance agreement. Marvin Test Solutions shall repair or replace (at its discretion) any defective product during

the stated warranty period. The software warranty includes any revisions or new versions released during the

warranty period. Revisions and new versions may be covered by a software support agreement. If you need to return

a board, please contact Marvin Test Solutions Customer Technical Services department via

http://www.marvintest.com/magic the Marvin Test Solutions on-line support system.

If You Need Help

Visit our web site at http://www.marvintest.com for more information about Marvin Test Solutions products,

services and support options. Our web site contains sections describing support options and application notes, as

well as a download area for downloading patches, example, patches and new or revised instrument drivers. To

submit a support issue including suggestion, bug report or question please use the following link:

http://www.marvintest.com/magic

You can also use Marvin Test Solutions technical support phone line (949) 263-2222. This service is available

between 7:30 AM and 5:30 PM Pacific Standard Time.

Disclaimer

In no event, shall Marvin Test Solutions or any of its representatives be liable for any consequential damages

whatsoever (including unlimited damages for loss of business profits, business interruption, loss of business

information, or any other losses) arising out of the use of or inability to use this product, even if Marvin Test

Solutions has been advised of the possibility for such damages.

Copyright

Copyright 2003-2016, by Marvin Test Solutions, Inc. All rights reserved. No part of this document can be

reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,

photocopying, recording, or otherwise, without the prior written consent of Marvin Test Solutions.

http://www.marvintest.com/magic
http://www.marvintest.com/
http://www.marvintest.com/magic

ii GX3700 User’s Guide

Trademarks

ATEasy, CalEasy, DIOEasy®, DtifEasy, WaveEasy Marvin Test Solutions (prior

name is Geotest - Marvin

Test Systems Inc.)

Quartus Altera Corporation

C++ Builder, Delphi Embarcadero Technologies

Inc.

LabVIEW, LabWindowstm/CVI National Instruments

Microsoft Developer Studio, Microsoft Visual C++, Microsoft Visual Basic, .NET,

and Windows

Microsoft Corporation

All other trademarks are the property of their respective owners.

GX3700 User’s Guide iii

Table of Contents

Safety and Handling ...i

Warranty ..i

If You Need Help ...i

Disclaimer ..i

Copyright ...i

Trademarks .. ii

Table of Contents ... iii

Chapter 1 - Introduction ... 1

Manual Scope and Organization ... 1

Manual Scope ... 1

Manual Organization .. 1

Conventions Used in this Manual ... 2

Chapter 2 - Overview .. 3

Introduction ... 3

Features ... 3

Applications .. 4

Board Description ... 5

Architecture .. 7

Memory .. 8

PXI/PXIe and PC Connections .. 10

Inter-FPGA Bus Interface Timing .. 11

DMA FIFO Interface Timing ... 12

Specifications .. 13

Digital I/O Channel .. 13

Expansion Board Interface ... 13

Timing Source .. 13

User FPGA ... 14

Power ... 14

Environmental .. 14

Virtual Panel Description .. 15

Virtual Panel Initialize Dialog .. 16

Virtual Panel Setup Page .. 17

Virtual Panel I/O Page .. 18

Virtual Panel DAQ Page (GX3788) .. 19

Virtual Panel About Page.. 21

iv GX3700 User’s Guide

Chapter 3 - Installation and Connections ... 23

Getting Started .. 23

Interfaces and Accessories ... 23

Packing List ... 23

Unpacking and Inspection .. 23

System Requirements ... 24

Installation of the GXFPGA Software .. 24

Setup Maintenance Program ... 24

Overview of the GXFPGA Software .. 25

Installation Folders ... 25

Configuring Your PXI System using the PXI/PCI Explorer ... 26

Board Installation .. 27

Before you Begin ... 27

Electric Static Discharge (ESD) Precautions ... 27

Installing a Board ... 27

Plug & Play Driver Installation .. 29

Removing a Board ... 29

GX3701 Connectors ... 30

GX3701 J1 – Flex I/O Connector .. 31

GX3701 J2 – Flex I/O Connector .. 32

GX3701 J3 – Flex I/O Connector .. 33

GX3701 J4 – Flex I/O Connector .. 34

GX3788 Connectors ... 35

GX3788 J1 – Flex I/O Bank A Connector ... 35

GX3788 J2 – Flex I/O Bank D Connector ... 36

GX3788 J3 – Flex I/O Bank B Connector ... 37

GX3788 J4 – Flex I/O Bank C Connector ... 38

Jumpers ... 39

Chapter 4 - Programming the Board ... 43

The GXFPGA Driver .. 43

Programming Using C/C++ Tools .. 43

Programming Using Visual Basic and Visual Basic .NET ... 43

Programming Using Pascal/Delphi ... 43

Programming GXFPGA Boards Using ATEasy® ... 44

Programming Using LabVIEW and LabVIEW/Real Time .. 44

Using and Programming under Linux ... 44

Using the GXFPGA driver functions .. 45

GX3700 User’s Guide v

Initialization, HW Slot Numbers and VISA Resource ... 45

Board Handle ... 46

Reset ... 46

Error Handling ... 46

Driver Version.. 46

Programming Examples .. 46

Distributing the Driver .. 46

Chapter 5 - GXFPGA Schematic Entry Tutorial.. 47

Introduction ... 47

Downloading Altera Design FPGA Design Tools .. 47

Create New Project ... 48

Device Selection .. 48

Pin Assignment Setup .. 49

Pin Assignments Table ... 49

Schematic entry project .. 51

Creating Design File with Schematic Entry .. 53

Phase 1: Creating the FPGA design - 32 bit Full Adder ... 53

Components Used .. 53

Schematic view .. 54

Design .. 55

Phase 2: Creating the FPGA Design - 2 to 1 Clock Mux .. 66

Components Used .. 66

Design .. 66

Phase 3: Creating the FPGA Design - 32 bit Dynamic Digital Pattern Sequencer ... 67

Components Used .. 67

Design .. 67

Configure Project to Output SVF and RPD Files ... 71

Compile an Example Project and Build RPD and SVF Files.. 73

Simulating the Design ... 75

Load Gx3700 with SVF File ... 78

Testing the Design .. 79

Adder Testing ... 79

Clock Mux Testing ... 79

Digital Sequencer Testing .. 80

Chapter 6 - GXFPGA Verilog Tutorial .. 81

Introduction ... 81

Downloading Altera Design FPGA Design Tools .. 81

vi GX3700 User’s Guide

Create New Project ... 82

Device Selection .. 82

Pin Assignment Setup .. 83

Pin Assignments Table ... 83

Verilog project ... 85

Creating Design File with Verilog .. 87

Phase 1: Creating the FPGA design - 32 bit Full Adder ... 87

Components Used .. 87

Top-level Verilog file ... 88

Top-level inputs and outputs .. 89

Phase 2: Creating the FPGA Design - 2 to 1 Clock Mux .. 95

Design .. 95

Configure Project to Output SVF and RPD Files ... 96

Compile an Example Project and Build RPD and SVF Files.. 98

Load Gx3700 with SVF File ... 100

Testing the Design .. 101

Adder Testing ... 101

Clock Mux Testing ... 102

Chapter 7 - GXFPGA VHDL Tutorial .. 103

Introduction ... 103

Downloading Altera Design FPGA Design Tools .. 103

Create New Project ... 104

Device Selection .. 104

Pin Assignment Setup .. 105

Pin Assignments Table ... 105

Schematic entry project .. 107

Creating Design File with VHDL ... 109

Phase 1: Creating the FPGA design - 32 bit Full Adder ... 109

Components Used .. 109

Top-level VHDL file .. 110

Top-level inputs and outputs .. 111

Phase 2: Creating the FPGA Design - 2 to 1 Clock Mux .. 121

Design .. 121

Configure Project to Output SVF and RPD Files ... 122

Compile an Example Project and Build RPD and SVF Files.. 124

Simulating the Design ... 126

Load Gx3700 with SVF File ... 129

GX3700 User’s Guide vii

Testing the Design .. 130

Adder Testing ... 130

Clock Mux Testing ... 131

Chapter 8 - GX3700 Expansion Boards .. 133

Expansion Board Design Guide .. 133

Mechanical Layout Guide ... 138

Expansion Board Connectors and Electrical Requirements .. 141

P1 Expansion Board Connector Pin Assignment .. 142

GX3701 Expansion Board .. 148

GX3701 Programming ... 148

GX3701 Expansion Board Specification ... 148

GX3702 Expansion Board .. 149

J1 – Flex I/O Bank A Connector .. 149

J2 – Flex I/O Bank B Connector .. 150

J3 – Flex I/O Bank C Connector .. 150

J4 – Flex I/O Bank D Connector .. 151

GX3702 Expansion Board Specification ... 151

GX3788 Expansion Board .. 152

GX3788 Programming ... 152

GX3788 Digital and Analog Multi-Function Expansion Board Specification ... 153

Chapter 9 - Function Reference ... 155

Introduction ... 155

GXFPGA Functions .. 156

GxFpgaDiscardEvents .. 159

GxFpgaDmaFreeMemory ... 160

GxFpgaDmaGetTransferStatus ... 161

GxFpgaDmaTransfer .. 162

GxFpgaGetBoardSummary... 163

GxFpgaGetBoardType .. 164

GxFpgaGetEepromSummary .. 165

GxFpgaGetDriverSummary .. 166

GxFpgaGetErrorString .. 167

GxFpgaGetExpansionBoardID ... 170

GxFpgaInitialize ... 171

GxFpgaInitializeVisa .. 172

GxFpgaLoad ... 173

GxFpgaLoadFromEeprom .. 174

viii GX3700 User’s Guide

GxFpgaLoadStatus.. 175

GxFpgaLoadStatusMessage .. 176

GxFpgaPanel ... 177

GxFpgaRead ... 178

GxFpgaReadRegister .. 179

GxFpgaReset ... 180

GxFpgaSetEvent ... 181

GxFpgaUpgradeFirmware .. 182

GxFpgaUpgradeFirmwareStatus ... 183

GxFpgaWaitOnEvent .. 184

GxFpgaWrite .. 185

GxFpgaWriteRegister ... 186

Gx3788Initialize ... 187

Gx3788InitializeVisa .. 188

Gx3788Reset ... 189

Gx3788GetBoardSummary... 190

Gx3788GetCalibrationInfo ... 191

Gx3788AnalogInGetGroundSource.. 192

Gx3788AnalogInMeasureChannel .. 193

Gx3788AnalogInScanGetChannelListIndex... 195

Gx3788AnalogInScanGetCount ... 196

Gx3788AnalogInScanGetLastRunCount .. 197

Gx3788AnalogInScanGetSampleRate .. 198

Gx3788AnalogInScanIsRunning .. 199

Gx3788AnalogInScanReadMemoryRawData .. 200

Gx3788AnalogInScanReadMemoryVoltages ... 201

Gx3788AnalogInScanSetChannelListIndex ... 202

Gx3788AnalogInScanSetCount .. 203

Gx3788AnalogInScanSetSampleRate .. 204

Gx3788AnalogInScanStart ... 205

Gx3788AnalogInSetGroundSource .. 206

Gx3788AnalogOutGetOutputState ... 207

Gx3788AnalogOutGetVoltage ... 208

Gx3788AnalogOutReset ... 209

Gx3788AnalogOutSetOutputState .. 210

Gx3788AnalogOutSetVoltage .. 211

Gx3788PioGetPort .. 212

GX3700 User’s Guide ix

Gx3788PioGetPortChannel... 213

Gx3788PioGetPortChannelDirection .. 214

Gx3788PioGetPortDirection ... 215

Gx3788PioReadPort ... 216

Gx3788PioReadPortChannel .. 217

Gx3788PioResetPort ... 218

Gx3788PioResetPortChannel ... 219

Gx3788PioSetPort .. 220

Gx3788PioSetPortChannel ... 221

Gx3788PioSetPortChannelDirection .. 222

Gx3788PioSetPortDirection ... 223

Gx3788TriggerGetOutputLevel .. 224

Gx3788TriggerReadInputLevel .. 225

Gx3788TriggerSetOutputLevel .. 226

Index ... 227

x GX3700 User’s Guide

Introduction 1

Chapter 1 - Introduction

Manual Scope and Organization

Manual Scope

The purpose of this manual is to provide all the necessary information to install, use, and maintain the GX3700 /

GX3700e instruments. This manual assumes the reader has a general knowledge of PC based computers, Windows

operating systems, and some understanding of digital I/O.

This manual also provides programming information using the GX3700 driver (referred in this manual GXFPGA).

Therefore, good understanding of programming development tools and languages may be necessary. The GXFPGA

function library supports both the GX3700 (PXI Hybrid slot compatible) and GX3700e (PXI Express) versions of

the module. The terms GX3700 and GX3700e are used interchangeably throughout the manual, any differences are

noted specifically.

Manual Organization

The GX3700 manual is organized in the following manner:

Chapter Content

Chapter 1 - Introduction Introduces the GX3700 manual. Lists all the supported board and shows warning

conventions used in the manual.

Chapter 2 – Overview Describes the GX3700 features, board description, its architecture, specifications and

the panel description and operation.

Chapter 3 –Installation

and Connections

Provides instructions on how to install a GX3700board and the GXFPGA software.

Chapter 4 –

Programming the Board

Provides a list of the GXFPGA software driver files, general purpose and generic driver

functions, and programming methods. Discusses supported application development

tools and programming examples.

Chapter 5 – GXFPGA

Schematic Entry

Tutorial

Provides an example of how to use the Quartus II’s Schematic Entry method to design

and FPGA and then load and test the design using the GXFPGA panel.

Chapter 6 – GXFPGA

Verilog Tutorial

Provides an example of how to use Quartus II and Verilog to design an FPGA and then

load and test the design using the GXFPGA panel.

Chapter 7 – GXFPGA

VHDL Tutorial

Provides an example of how to use Quartus II and VHDL to design an FPGA and then

load and test the design using the GXFPGA panel.

Chapter 8 – Expansion

Boards

Describes how to design a GX3700 expansion board and describes several standard

expansion boards available from Marvin Test Solutions.

Chapter 9 – Functions

Reference

Provides a list of the GX3700 driver functions. Each function description provides

syntax, parameters, and any special programming comments.

2 GX3700 User’s Guide

Conventions Used in this Manual

Symbol Convention Meaning

Static Sensitive Electronic Devices. Handle Carefully.

Warnings that may pose a personal danger to your health. For example, shock hazard.

Cautions where computer components may be damaged if not handled carefully.

Tips that aid you in your work.

Formatting

Convention

Meaning

Monospaced Text Examples of field syntax and programming samples.

Bold type Words or characters you type as the manual instructs. For example: function or panel

names.

Italic type Specialized terms. Titles of other reference books. Placeholders for items you must

supply, such as function parameters

Overview 3

Chapter 2 - Overview

Introduction

The GX3700 / GX3700e is a user configurable, FPGA based, 3U PXI / PXI Express card which offers 160 digital

I/O signals which can be configured for single-ended or differential interfaces. The card employs the Altera Stratix

III FPGA, which can support data rates up to 1.2 Gb/s (SerDes interface) and features over 65,000 logic elements

and 2.636 Kb of memory. The GX3700 / GX3700e is supplied with an expansion board, GX3701 – Flex I/O Feed

Through Module, providing access to the FPGA’s 160 I/Os. Alternatively, users can design their own custom

expansion cards for specific applications eliminating the need for additional external boards which are cumbersome

and physically difficult to integrate into a test system. The design of the FPGA is done by using Altera’s free

Quartus II Web Edition tool set. Once the user has compiled the FPGA design, the configuration file can be loaded

directly into the FPGA or via an on-board EEPROM.

Features

The GX3700 / GX3700e’s digital I/O signals are 5 volt tolerant. Logic families supported by the I/O interface

include LVTTL, LVDS and LVCMOS. The FPGA’s I/Os includes 160 single ended I/O with support for 32

differential pairs, 4 dedicated global clock inputs (2 differential pairs), and various VCCIO voltages. At power-up,

all I/Os will be isolated from the UUT. The FPGA device supports up to four phase lock loops (PLL) for clock

synthesis, clock generation and for support of the I/O interface. An on-board 80 MHz oscillator is available for use

with the FGPA device or alternatively, the PXI 10 MHz or 100 MHz clock can be used as a clock reference by the

FPGA.

The FPGA has access to all of the PXI Express bus resources including the PXI 10 MHz clock, PXIe 100 MHz

clock, PXIe Sync100, PXIe DStar triggers, the local bus, and the PXI triggers; allowing the user to create a custom

instrument which incorporates all of the PXI Express bus resources. . The GX3700’s FPGA has access to all of the

PXI Hybrid slot compatible resources including PXI 10 MHz clock, the local bus, and the PXI triggers Control and

access to the FPGA is provided via the GX3700 / GX3700e’s driver which includes tools for downloading the

compiled FPGA code as well as register read and write functionality.

The GX3700 / GX3700e include the provision to add a daughter board which will provide additional flexibility for

those users who wish to design their own custom interfaces for specific applications.

Communication between the customer-programmable FPGA and the PXI/PXIe bus is implemented via a dedicated

FPGA device (Interface FPGA). The Interface FPGA contains control and status registers for the board and provides

in-system programmability of the customer-programmable FPGA. The Interface FPGA interfaces directly to the

PXI/PXIe bus and will decode/encode the bus protocol.

The GX3700 has external SRAM, flash, and an external clock source that is accessible by the customer.

The GX3700 employs the Altera Stratix III 780 pin device. Key features for the Altera device includes:

 47,500 logic elements (LEs) and 1.88Mbits of memory

 Supports up to four phase-locked loops (PLLs) for clock synthesis, clock generation and support of I/O

interfaces

 Up to five outputs per PLL can be accessed

 Dynamically reconfigurable logic supports programmable phase shift, frequency multiplication/division,

and in-system frequency re-programming without reconfiguring the device

 Support for high-speed external memory interfaces including DDR, DDR2, SDR, SDRAM, and QDRII

SRAM at up to 400 megabits per second (Mbps)

 327 I/O pins arranged in eight I/O banks that support a wide range of industry I/O standards

 Supports up to 875 Mbps receive and 840 Mbps transmit LVDS communications data rates

4 GX3700 User’s Guide

 Support for Bus LVDS (BLVDS), LVDS, RSDS®, mini-LVDS and PPDS® differential I/O standards

 Supported I/O standards include LVTTL, LVCMOS, SSTL, HSTL, PCI, PCI-X, LVPECL, LVDS, mini-

LVDS, RSDS, and PPDS; PCI Express Base

 160 single ended I/Os.

 32 differential pairs.

 4 dedicated global clock inputs (2 differential pairs).

 VCCIO can be preset using on-board jumpers to 1.2V, 2.5V, or 3.3V.

 Internal FPGA SRAM (memory size depends on internal FPGA model installed)

 1MB external SRAM in addition to internal FPGA SRAM.

 16MB flash

 User controlled LED.

 Integrated DMA engine.

 All of PXI/PXIe instrumentation signals such as differential Star Trigger, SYNC100, CLK100, CLK10,

local bus, trigger bus, and single-ended Star Trigger are available to customer.

Applications

 Automatic Test Equipment (ATE) and Functional Test

 Data Acquisition

 Process Control

 Factory Automation

Overview 5

Board Description

The GX3700 is a 3U PXI hybrid slot compatible instrument card that consists of 160 TTL I/O Channels divided into

groups of 40 channels. Each of these groups is connected to a 68 pin SCSI type connector on the front panel of the

instrument (J1-J4) using a daughter board module (GX3701). A short on JP7 will force the user FPGA to be

configured automatically on boot up using the contents of the EEPROM. For more information about the connectors

and jumpers and their location on the board refer to Chapter 3 – Installation and Connections.

Figure 2-1: GX3700e Board with the GX3701 Module Mounted

6 GX3700 User’s Guide

Figure 2-2: GX3700 Board with the GX3701 Module Mounted

Overview 7

 Architecture

The GX3700 consists of a user programmable FPGA that can access external resources and peripherals such as the

PCI bus, SRAM and flash memories. The user FPGA is an Altera Stratix III that can be programmed directly

through the software driver or indirectly by the onboard EEPROM that can store a FPGA bit stream for later use. An

Expansion board connects to the User FPGA to provide external I/O. The standard expansion board provides 160

I/O channels that are brought out to the front panel. The user may design custom expansion boards based on

documentation provided by Marvin Test Solutions.

Figure 2-3: GX3700 Architecture

 PXI Bus

PXI Local Bus

And Trigger Bus

PXI

10 Mhz

Address

EEPROM

Expansion Board

PXI

Interface

Program

Data

160 I/O

Address

User FPGA
 Altera Stratix III FPGA

780 I/O Pins

External SRAM

Flash Memory

8 GX3700 User’s Guide

 Memory

The Gx3700 has three types of memories, internal SRAM, external SRAM and Flash memory.

Figure 2-6 is a more detailed block diagram of the connections between the User’s FPGA, the Flash and the SRAM

fsm_a(23:1)

flash_cen

flash_oen

flash_resetn

flash_wen

flash_busy_n

flash_byte_n

fsm_d(15:0)
A(22:0)fsm_a(23:1)

fsm_a(19:2)
A(17:0)

fsm_d(31:0)

fsm_d(31:0)

sram_ben0

sram_ben1

sram_ben2

sram_ben3

sram_wen

sram_cen

sram_oen

D(15:0)

D(31:0)

Flash

SRAM

User

FPGA

Overview 9

Figure 2-4: GX3700 / GX3700e Connections between User FPGA, Flash, and SRAM

10 GX3700 User’s Guide

PXI/PXIe and PC Connections

The User FPGA, Stratix III, can be configured either through the EEPROM or directly through the PXI Interface. It

has access to PXI resources such as the local bus, trigger bus, and PXI 10 Mhz clock source and is also connected to

the PXI Interface FPGA to give access to PCI resources and memory. This allows the User FPGA to communicate

with the host system’s operating system using the provided GXFPGA software library functions.

A more detailed diagram of the PXI/PXIe Signal Connections is shown below . It shows the different PXI/PXIe

signals and how they are interfaced to the User FPGA.

The bi-directional bus switch with level shifting allows the PXI/PXIe signals to be interfaced to the User FPGA. The

direction of the signals is controlled and determined by the signals from the User FPGA.

For example, to use the signal PXITrig(7), the user FPGA would be programmed as follows:

1. If this signal is only used as an input, define it inside the User FPGA as an input pin.

2. However, if the signal is used as an output only or a bidirectional I/O, define it as such in the User FPGA but

make sure to drive the output to high impedance or tri-state level when the signal is not driving or is inactive.

In both of these cases the level translation and the direction of the signals are handled by the on-board bus switch.

Also shown are the buffers for the DSTAR_A, DSTAR_B and DSATR_C signals. These buffers conform to the

standard as required by the PXI Systems Alliance’s PXI Express Hardware Specification Rev 1.0. Note that the

DSTAR signals are only available with the GX3700e module.

User

FPGA

Bi-

Directional

Bus Switch

W/ Level

Shifting

StarTrig

PXI10MHz

PXITrig(7:0)

PXI_LBR6

PXI_LBL6

LVPECL-

to-LVTTL
DSTAR_A +/-

LVDS-to-

LVTTL
DSTAR_B +/-

LVTTL-to-

LVDS
DSTAR_C +/-

Figure 2-5: PXI/PXIe Signal Connections

Overview 11

Inter-FPGA Bus Interface Timing

The Flex FPGA communicates with the PCI/PCIe host via the PXI/PXIe Bridge FPGA. The following figure shows

the inter-FPGA timing diagram for communication between the two FPGAs.

A1

PCIClock

CS(3:1)/LEXT

Addr(19:2) A2 A3 A4

WrEn

FDt (31:0) D1 D2 D3 D4

Write Cycle

A1

PCIClock

CS(3:1)/LEXT

Addr (19:2) A2 A3 A4

RdEn

FDt (31:0) D1 D2 D3 D4

Read Cycle

LRead_DV

One or

more clock

cycles

Figure 2-6 – Inter-FPGA Bus Interface Diagram

12 GX3700 User’s Guide

DMA FIFO Interface Timing

The PXI Bridge FPGA contains the DMA engine for transferring data between the Flex FPGA and the PCI/PCIe

host. Unlike a Scatter-Gather DMA engine, this one will need a contiguous memory space.

There are two 32-bit buses between the PXI Bridge FPGA and the Flex FPGA for transmit and receive of DMA

data.

For DMA write, the DMA controller will read data from the Flex FPGA and write this data to the host PC. The

controller will only read data when it’s in DMA write mode and will only read when the EMPTY signal is de-

asserted. The controller will only read up to the number of byte count specified for the DMA transfer and will not

read more even if the FIFO is still empty.

For DMA read, the DMA controller will read data from the PC host and will write this data to the Flex FPGA.

When in DMA read mode, the Flex FPGA must expect data and must store it. Otherwise, this data will be lost.

RX_DMA_DAT(31:0)

RX_DMA_DV

RX_DMA_FIFOFUL

L

TX_DMA_DAT(31:0)

TX_DMA_

DV

D1 D2 D3 D4

DMA Write FIFO I/F Read from memory and write to PC host

TX_DMA_FIFOEMPTY

TX_DMA_FIFO_RD

D1 D2 D3 D4

DMA Read FIFO I/F Read from PC host and write to memory

Zero or more

clock cycles

PCIClock

PCIClock

Figure 2-7: DMA FIFOs Timing Diagram

Overview 13

Specifications

The following table outlines the specifications of the GX3700 / GX3700e.

Digital I/O Channel

Logic Families LVTTL, LVDS, configurable for 1.2 / 2.5 / 3.3 V logic; 5

volt compatible (programmable via the FPGA on a per

pin basis)

Output Current +/ 12.0 mA, max. (programmable via the FPGA on a per

pin basis)

Input Leakage Current +/- 10 uA

Power On State Programmable by line, default is disconnect at power on

Number of Channels 4 banks of 40 I/O signals. Direction is configurable on a

per pin basis Disconnect on a per bank basis

Protection Overvoltage: -0.5V to 7.0V (input) Short circuit: up to 8

outputs may be shorted at a time

Daughter Board User

Connectors

(4) SCSI III, VHDCI type, 68 pin female

Expansion Board Interface

Board ID 4 bits

Digital I/O 160, each bank of 40 can be configured to bypass or

access the expansion board

FPGA Flex I/O 4 signals

Master Clear From PXI interface

Power +/- 12 volts, +5 volts, +3.3 volts, +2.5 volts, +1.2 volts

Timing Source

PXI 10 MHZ PXI Bus

Internal 80 MHz oscillator, +/- 20 ppm

14 GX3700 User’s Guide

User FPGA

FPGA Type Default:

3700: Stratix III, EP3SL50F780

3700e: Stratix III, EP3SL70F780

Check the instrument panel, About page for newer

versions.

Number of PLLs Four

Logic Elements 47,500

Internal Memory FPGA dependent:

EP3SL50: 2,133 Kb

EP3SL70: 2,636 Kb

EP3SL110: 4,875 Kb

EP3SL150: 6,390 Kb

EP3SL200: 10,646 Kb

EP3SL340: 18,381 Kb

EP3SE50: 5,625 Kb

EP3SE80: 6,683 Kb

EP3SE110: 8,727 Kb

EP3SLE260: 16,282 Kb

Power

3.3 VDC 400 mA (typ.); 1 A (Max.)

5 VDC 300 mA (typ.); 1.2 A (Max.)

12 VDC (For Expansion Board) Expansion Board Dependent

Environmental

Operating Temperature 0 to 50° C

Storage Temperature -20° C to 70° C

Size 3U PXI

Weight 200 g

Overview 15

Virtual Panel Description

The GX3700 includes a virtual panel program, which enables full utilization of the various configurations and

controlling modes. To fully understand the front panel operation, it is best to become familiar with the functionality

of the board.

To open the virtual panel application, select GX3700 Panel from the Marvin Test Solutions, GXFPGA menu

under the Start menu. The GX3700 virtual panel opens as shown here:

Figure 2-8: GX3700 Virtual Panel

Initialize – Opens the Initialize Dialog (see Initialize Dialog paragraph) in order to initialize the board driver. The

current settings of the selected board will not change after calling initialize. The panel will reflect the current

settings of the board after the Initialize dialog closes.

Reset – Resets the PXI board settings to their default state and clears the reading.

Apply – Applies changed settings to the board.

Close – Closes the panel. Closing the panel does not affect the board settings.

Help – Opens the on-line help window. In addition to the help menu, the caption shows a What’s This Help button

(?) button. This button can be used to obtain help on any control that is displayed in the panel window. To displays

the What’s This Help information click on the (?) button and then click on the control – a small window will

displays the information regarding this control.

16 GX3700 User’s Guide

Virtual Panel Initialize Dialog

The Initialize dialog initializes the driver for the selected board. The board settings will not change after initialize is

called. Once initialized, the panel will reflect the current settings of the board.

The Initialize dialog supports two different device drivers that can be used to access and control the board:

1. Use Marvin Test Solutions’ HW – This is the device driver installed by the setup program and is the default

driver. When selected, the Slot Number list displays the available GX3700 boards installed in the system and

their slots. The chassis, slots, devices and their resources are also displayed by the HW resource manager,

PXI/PCI Explorer applet that can be opened from the Windows Control Panel. The PXI/PCI Explorer can be

used to configure the system chassis, controllers, slots and devices. The configuration is saved to PXISYS.INI

and PXIeSYS.INI located in the Windows folder. These configuration files are also used by VISA. The

following figure shows the slot number 0x109 (chassis 1 Slot 9). This is the slot number argument (nSlot)

passed by the panel when calling the driver GxFpgaInitialize function which is used to initialize the driver for

the specified board.

Figure 2-9: Initialize Dialog Box using Marvin Test Solutions’ HW driver

2. Use VISA – This is a third-party device driver usually provided by National Instrument (NI-VISA). When

selected, the Resource list displays the available boards installed in the system and their VISA resource

address. The chassis, slots, devices and their resources are also displayed by the VISA resource manager,

Measurement & Automation (NI-MAX) and by Marvin Test Solutions PXI/PCI Explorer. The following

figure shows PXI9::13::INSTR as the VISA resource (PCI bus 9 and Device 13). This is a VISA resource string

argument (szVisaResource) which is passed by the panel when calling the driver GxFpgaInitializeVisa

function which initializes the driver for the specified board.

Figure 2-10: Initialize Dialog Box using VISA resources

Overview 17

Virtual Panel Setup Page

After the board is initialized, the panel is enabled and will display the current setting of the board. The following

picture shows the Setup page settings:

Figure 2-11: GX3700 Virtual Panel – Setup page

The following controls are shown in the Setup page:

Volatile radio button: Select this radio button to load the File to the Volatile (current) FPGA configuration.

EEPROM radio button: Select this radio button to load File to the EEPROM FPGA.

Load From EEPROM button: Loads the volatile (current FPGA) with the FPGA configuration that is stored in the

EEPROM

File text box: File path to the programming file intended to load the volatile FPGA or EEPROM. The File type must

be Serial Vector File (.svf) for Volatile loading or Raw Programming Data (.RPD) file for EEPROM.

Load Button: Starts the loading process, either to the volatile FPGA or to the EEPROM, depending on which radio

button the user selects.

EEPROM Last Updated On Text: Indicates the last time the EEPROM was loaded.

EEPROM File Name Text: Indicates the last file name that was written to the EEPROM.

18 GX3700 User’s Guide

Expansion Board Bypass Checkboxes: These checkboxes control the routing of each of the FPGA’s I/O Banks.

When the box is checked, it indicates that the I/O Bank will be connected directly to the I/O front connectors. If the

box is unchecked, it indicates that the I/O Bank will be connected to the expansion board.

Virtual Panel I/O Page

Clicking on the I/O tab will show the I/O page as shown in Figure 2-9: GX3700 Virtual Panel – I/O page

Figure 2-12: GX3700 Virtual Panel – I/O page

The following controls are shown in the I/O page:

Offset Text Field: The offset into the FPGA Register or Memory space (BAR2-4) in bytes. This field can be used

with a decimal or hexadecimal value (prefix the value with 0x). The offset is limited to 0x400 bytes when reading

the register space and 0x40000 bytes when reading the memory space. Offset must be specified on a 4-byte

alignment.

Write Text Field: The 32-bit data (hexadecimal or decimal) to be written the specified offset in either FPGA

Register or Memory space (BAR2-4).

Write Button: Write the 32-bit double word to either the FPGA Register or Memory space at the specified offset.

Read Text Field: The 32-bit data that has been read from the specified offset in either FGPA Register or Memory

space. Value is specified in hexadecimal.

Read Button: Read the 32-bit double word from either the FPGA Register or Memory space at the specified offset.

Overview 19

Virtual Panel DAQ Page (GX3788)

Clicking on the DAQ tab will show the DAQ page as shown in Figure 2-13: GX3788 Virtual Panel – DAQ page

The DAQ tab only appears when the GX3788 daughter board is used.

Figure 2-13: GX3788 Virtual Panel – DAQ page

The following controls are shown in the DAQ page:

Digital I/O Group Box

Port Combo Box: Select the digital I/O port (0-2) to configure. The output data and direction can be set and read

for the selected digital port.

Readback Field: The 32-bit data that has been read from the specified digital port. This is an actual sampling of the

digital line states at the selected digital port.

Data Text Field: The 32-bit output data (hexadecimal or decimal) to be written the specified digital port. A '1' bit

signifies a logic high and a '0' bit signifies a logic low.

Set Button: Writes the Data field contents to the digital port selected.

Direction Text Field: The 32-bit direction data (hexadecimal or decimal) to be written to the specified digital port.

A '1' bit signifies an output channel and a '0' bit signifies an input channel.

20 GX3700 User’s Guide

Set Button: Writes the Direction field contents to the digital port selected.

Analog In Group Box

Analog In List: Displays a continuously updating voltage measurement from each of the 16 analog input channels.

In addition, each channels measurement mode and range are also shown.

Mode Combo Box: Sets the channel mode to use for a channel's measurement (single ended or differential)

Range Combo Box: Sets the channel range to sue for a channel's measurement

Ch 0-7 Combo Box: Sets the ground source for analog in channels 0 to 7

Ch 8-15 Combo Box: Sets the ground source for analog in channels 8 to 15

Analog Output Group Box

Enable All Channels Outputs Check Box: Sets all the analog output channels to enabled or disabled

Reset All Channels Button: Reset all the analog output channels to default settings

Voltage Edit Box Fields (Channel 0 to Channel 7): Enter output voltages for each of the analog output channels.

Each channle’s Voltage edit box has a set button to apply the new voltage settings.

Overview 21

Virtual Panel About Page

Clicking on the About tab will show the About page as shown in Figure 2-7

Figure 2-14: GX3700 Virtual Panel – About Page

The top part of the About page displays version and copyright of the GX3700 driver. The bottom part displays the

board summary, including the main board FPGA version, user FPGA part number, serial number, and each installed

I/O Module FPGA version. The About page also contains a button Upgrade Firmware… used to upgrade the

board FPGA. This button maybe used only when the board requires upgrade as directed by Marvin Test Solutions

support. The upgrade requires a firmware file (.jam) that is written to the board FPGA. After the upgrade is

complete you must shut down the computer to recycle power to the board.

22 GX3700 User’s Guide

Installation and Connections 23

Chapter 3 - Installation and Connections

Getting Started

This section includes general hardware installation procedures for the GX3700 board and installation instructions for

the GX3700 (GXFPGA) software. Before proceeding, please refer to the appropriate chapter to become familiar

with the board being installed.

To Find Information on.. Refer to..

Hardware Installation This Chapter

GX3700 Driver Installation This Chapter

Programming Chapter 4

GXFPGA Design Tools and Tutorial Chapter 5, 6 and 7

Expansion Boards Chapter 8

GX3700 Function Reference Chapter 9

Interfaces and Accessories

The following accessories are available from Marvin Test Solutions for GX3700 switching board.

Part / Model Number Description

GT95015 Connector Interface SCSI to 100 Mil Grid Differential

GT95021 2’ 68-Pin shielded cable

GT95022 3’ 68-Pin shielded cable

GT95028 10’ 68-Pin shielded cable

GT95031 6’ 68-Pin shielded cable

Packing List

All GX3700 boards have the same basic packing list, which includes:

1. GX3700 Board

2. GXFPGA Driver Disk

Unpacking and Inspection

After removing the board from the shipping carton:

 Caution - Static sensitive devices are present. Ground yourself to discharge static.

1. Remove the board from the static bag by handling only the metal portions.

2. Be sure to check the contents of the shipping carton to verify that all of the items found in it match the packing

list.

3. Inspect the board for possible damage. If there is any sign of damage, return the board immediately. Please refer

to the warranty information at the beginning of the manual.

24 GX3700 User’s Guide

System Requirements

The GX3700 Instrument board is designed to run on PXI compatible computer running WindowsXP SP3-Windows

10 (32/64-bit).

The board requires one unoccupied 3U PXI bus slot.

Installation of the GXFPGA Software

Before installing the board, it is recommended that you install the GXFPGA software as described in this section. To

install the GXFPGA software, follow the instruction described below:

1. Insert the Marvin Test Solutions CD-ROM and locate the GXFPGA.EXE setup program. If your computer’s

Auto Run is configured, when inserting the CD, a browser will show several options. Select the Marvin Test

Solutions Files option and then locate the setup file. If Auto Run is not configured, you can open the Windows

explorer and locate the setup files (usually located under \Files\Setup folder). You can also download the file

from Marvin Test Solutions’ web site (www.marvintest.com).

2. Run the GXFPGA setup and follow the instruction on the Setup screen to install the GXFPGA driver.

Note: When installing under Windows, you may be required to restart the setup logging-in as a user with

Administrator privileges. This is required in-order to upgrade your system with newer Windows components

and to install kernel-mode device drivers (HW.SYS and HWDEVICE.SYS) which are required by the

GXFPGA driver to access resources on your board.

3. The first setup screen to appear is the Welcome screen. Click Next to continue.

4. Enter the folder where GXFPGA is to be installed. Either click Browse to set up a new folder, or click Next to

accept the default folder of C:\Program Files\Marvin Test Solutions\GXFPGA for 32-bit

Windows or C:\Program Files (x86)\Marvin Test Solutions\GXFPGA for 64-bit Windows.

5. Select the type of Setup you wish and click Next. You can choose between Typical, Run-Time and Custom

setups types. The Typical setup type installs all files. Run-Time setup type will install only the files required

for controlling the board either from its driver or from its virtual panel. The Custom setup type lets you select

from the available components.

The program will now start its installation. During the installation, Setup may upgrade some of the Windows shared

components and files. The Setup may ask you to reboot after completion if some of the components it replaced were

used by another application during the installation – do so before attempting to use the software.

You can now continue with the installation to install the board. After the board installation is complete you can test

your installation by starting a panel program that lets you control the board interactively. The panel program can be

started by selecting it from the Start, Programs, GXFPGA menu located in the Windows Taskbar.

Setup Maintenance Program

You can run the Setup again after GXFPGA has been installed from the original disk or from the Windows Control

Panel – Add Remove Programs applet. Setup will be in the Maintenance mode when running for the second time.

The Maintenance window show below allows you to modify the current GXFPGA installation. The following

options are available in Maintenance mode:

 Modify. When you want to add, or remove GXFPGA components.

 Repair. When you have corrupted files and need to reinstall.

 Remove. When you want to completely remove GXFPGA.

Select one of the options and click Next and follow the instruction on the screen until Setup is complete.

http://www.marvintest.com/

Installation and Connections 25

Overview of the GXFPGA Software

Once the software is installed, the following tools and software components are available:

 GXFPGA Panel – Configures and controls the GXFPGA board various features via an interactive user

interface.

 GXFPGA driver - A DLL based function library (GXFPGA.DLL, located in the Windows System folder)

used to program and control the board. The driver uses Marvin Test Solutions’ HW driver or VISA

supplied by third party vendor to access and control the GXFPGA boards.

 Programming files and examples – Interface files and libraries for support of various programming tools.

A complete list of files and development tools supported by the driver is included in subsequent sections of

this manual.

 Documentation – On-Line help and User’s Guide for the board, GXFPGA driver and panel.

 HW driver and PXI/PCI Explorer applet – HW driver allows the GXFPGA driver to access and

program the supported boards. The explorer applet configures the PXI chassis, controllers and devices. This

is required for accurate identification of your PXI instruments later on when installed in your system. The

applet configuration is saved to PXISYS.ini and PXIeSYS.ini and is used by instruments HW driver and

VISA. The applet can be used to assign chassis numbers, Legacy Slot numbers and instrument alias names.

The HW driver is installed and shared with all Marvin Test Solutions products to support accessing the PC

resources. Similar to HW driver, VISA provides a standard way for instrument manufacturers and users to

write and use instruments drivers. VISA is a standard maintained by the VXI Plug & Play System Alliance

and the PXI Systems Alliance organizations (186Hhttp://www.pxisa.org/). The VISA resource manager such as

National Instruments Measurement & Automation (NI-MAX) displays and configures instruments and

their address (similar to Marvin Test Solutions’ PXI/PCI Explorer). The GXFPGA driver can work with

either HW or VISA to control an access the supported boards.

Installation Folders

The GX3700 driver files are installed in the default folder C:\Program Files [(x86)]\Marvin Test

Solutions\GXFPGA. You can change the default GXFPGA folder to one of your choosing at the time of

installation.

During the installation, GXFPGA Setup creates and copies files to the following folders:

Name Purpose / Contents

…\Marvin Test Solutions\GXFPGA The GXFPGA folder. Contains panel programs, programming libraries,

interface files and examples, on-line help files and other documentation.

…\Marvin Test Solutions\HW HW device driver. Provide access to your board hardware resources such

as memory, IO ports and PCI board configuration. See the

README.TXT located in this directory for more information.

…\ATEasy\Drivers ATEasy drivers folder. GXFPGA Driver and example are copied to this

directory only if ATEasy is installed to your machine.

…\Windows\System or System32 Windows System directory. Contains the GXFPGA DLL,

GXFPGA64.DLL drivers, HW driver shared files and some upgraded

system components, such as the HTML help viewer, etc.

http://www.pxisa.org/

26 GX3700 User’s Guide

Configuring Your PXI System using the PXI/PCI Explorer

To configure your PXI/PCI system using the PXI/PCI Explorer applet follow these steps:

1. Start the PXI/PCI Explorer applet. The applet can be start from the Windows Control Panel or from the

Windows Start Menu, Marvin Test Solutions, HW, PXI/PCI Explorer.

2. Identify Chassis and Controllers. After the PXI/PCI Explorer is started, it will scan your system for changes

and will display the current configuration. The PXI/PCI Explorer automatically detects systems that have

Marvin Test Solutions controllers and chassis. In addition, the applet detects PXI-MXI-3/4 extenders in your

system (manufactured by National Instruments). If your chassis is not shown in the explorer main window, use

the Identify Chassis/Controller commands to identify your system. Chassis and Controller manufacturers should

provide INI and driver files for their chassis and controllers which are used by these commands.

3. Change chassis numbers, PXI devices Legacy Slot numbering and PXI devices Alias names. These are

optional steps and can be performed if you would like your chassis to have different numbers. Legacy slots

numbers are used by older Marvin Test Solutions or VISA drivers. Alias names can provide a way to address a

PXI device using a logical name (e.g. “FPGA1”). For more information regarding slot numbers and alias names,

see the GX3700Initialize and GxFpgaInitializeVisa functions.

4. Save your work. PXI Explorer saves the configuration to the following files located in the Windows folder:

PXISYS.ini, PXIeSYS.ini and GxPxiSys.ini. Click on the Save button to save your changes. The PXI/Explorer

will prompt you to save the changes if changes were made or detected (an asterisk sign ‘ *‘ in the caption

indicated changes).

Figure 3-1: PXI/PCI Explorer

Installation and Connections 27

Board Installation

Before you Begin

 Install the GXFPGA driver as described in the prior section.

 Configure your PXI/PC system using PXI/PCI Explorer as described in the prior section.

 Verify that all the components listed in the packing list (see previous section in this chapter) are present.

Electric Static Discharge (ESD) Precautions

To reduce the risk of damage to the GX3700 board, the following precautions should be observed:

 Leave the board in the anti-static bags until installation requires removal. The anti-static bag protects the

board from harmful static electricity.

 Save the anti-static bag in case the board is removed from the computer in the future.

 Carefully unpack and install the board. Do not drop or handle the board roughly.

 Handle the board by the edges. Avoid contact with any components on the circuit board.

 Caution – Do not insert or remove any board while the computer is on. Turn off the power from the PXI

chassis before installation.

Installing a Board

Install the board as follows:

1. Install first the GXFPGA Driver as described in the next section.

2. Turn off the PXI chassis and unplug the power cord.

3. Locate a PXI empty slot on the PXI chassis.

4. Place the module edges into the PXI chassis rails (top and bottom).

5. Carefully slide the PXI board to the rear of the chassis, make sure that the ejector handles are pushed out (as

shown in 372HFigure 3-2).

28 GX3700 User’s Guide

Figure 3-2: Ejector handles position during module insertion

6. After you feel resistance, push in the ejector handles as shown in 373HFigure 3-3 to secure the module into the

frame.

Figure 3-3: Ejector handles position after module insertion

7. Tighten the module’s front panel to the chassis to secure the module in.

8. Connect any necessary cables to the board.

9. Plug the power cord in and turn on the PXI chassis.

Installation and Connections 29

Plug & Play Driver Installation

Plug & Play operating systems such as Windows notifies the user that a new board was found using the New

Hardware Found wizard after restarting the system with the new board.

If another Marvin Test Solutions board software package was already installed, Windows will suggest using the

driver information file: HW.INF. The file is located in your Program Files\Marvin Test Solutions\HW folder. Click

Next to confirm and follow the instructions on the screen to complete the driver installation.

If the operating system was unable to find the driver (since the GXFPGA driver was not installed prior to the board

installation), you may install the GXFPGA driver as described in the prior section, then click on the Have Disk

button and browse to select the HW.INF file located in C:\Program Files [(x86)]\Marvin Test Solutions\HW.

If you are unable to locate the driver click Cancel to the found New Hardware wizard and exit the New Hardware

Found Wizard, install the GXFPGA driver, reboot your computer and repeat this procedure.

The Windows Device Manager (open from the System applet from the Windows Control Panel) must display the

proper board name before continuing to use the board software (no Yellow warning icon shown next to device). If

the device is displayed with an error, you can select it and press delete and then press F5 to rescan the system again

and to start the New Hardware Found wizard.

Removing a Board

Remove the board as follows:

1. Turn off the PXI chassis and unplug the power cord.

2. Locate a PXI slot on the PXI chassis.

3. Disconnect and remove any cables/connectors connected to the board.

4. Un-tighten the module’s front panel screws to the chassis.

5. Push out the ejector handles and slide the PXI board away from the chassis.

6. Optionally – uninstall the GXFPGA driver.

30 GX3700 User’s Guide

GX3701 Connectors

These connectors exist only with the GX3701 daughter board card mounted on the GX3700/GX3700e.

Table 3-1: GX3701 Connectors

Figure 3-4: GX3701e Connectors J1-J4

Figure 3-5: GX3701 Connectors J1-J4

Connections to the GX3700/GX3701 may be made with 68-pin VHDCI male plug connector. Shielded cables with

matching connectors are available from Marvin Test Solutions.

Connector Description

J1 FLEX I/O differential channels 1-32 or single ended 1-64

J2 FLEX I/O channels 33-64

J3 FLEX I/O channels 65-96

J4 FLEX I/O channels 97-128

Installation and Connections 31

The following section describes J1-J4 connectors.

GX3701 J1 – Flex I/O Connector

Pin

Function Pin

Function Pin

Function Pin

Function

1 Flex I/O 1P 18 Flex I/O 18P 35 Flex I/O 1N 52 Flex I/O 18N

2 Flex I/O 2P 19 Flex I/O 19P 36 Flex I/O 2N 53 Flex I/O 19N

3 Flex I/O 3P 20 Flex I/O 20P 37 Flex I/O 3N 54 Flex I/O 20N

4 Flex I/O 4P 21 Flex I/O 21P 38 Flex I/O 4N 55 Flex I/O 21N

5 Flex I/O 5P 22 Flex I/O 22P 39 Flex I/O 5N 56 Flex I/O 22N

6 Flex I/O 6P 23 Flex I/O 23P 40 Flex I/O 6N 57 Flex I/O 23N

7 Flex I/O 7P 24 Flex I/O 24P 41 Flex I/O 7N 58 Flex I/O 24N

8 Flex I/O 8P 25 Flex I/O 25P 42 Flex I/O 8N 59 Flex I/O 25N

9 Flex I/O 9P 26 Flex I/O 26P 43 Flex I/O 9N 60 Flex I/O 26N

10 Flex I/O 10P 27 Flex I/O 27P 44 Flex I/O 10N 61 Flex I/O 27N

11 Diff Clock Input P 28 Flex I/O 28P 45 Diff Clock Input N

GND

62 Flex I/O 28N

12 Flex I/O 12P 29 Flex I/O 29P 46 Flex I/O 12N 63 Flex I/O 29N

13 Diff Clock Input P 30 Flex I/O 30P 47 Diff Clock Input N 64 Flex I/O 30N

14 Flex I/O 14P 31 Flex I/O 31P 48 Flex I/O 14N GND 65 Flex I/O 31N

15 Flex I/O 15P 32 Flex I/O 32P 49 Flex I/O 15N 66 Flex I/O 32N

16 Flex I/O 16P 33 User 3.3V 50 Flex I/O 16N 67 User 3.3V

17 Flex I/O 17P 34 GND 51 Flex I/O 17N GND 68 GND

Table 3-2: GX3701 J1 Flex IO Pin Out

P: positive differential I/O signal (e.g. Flex I/O 1P)

N: negative differential I/O signal (e.g. Flex I/O 1N)

Diff Clock Input: Dedicated differential clock inputs.

32 GX3700 User’s Guide

GX3701 J2 – Flex I/O Connector

Pin # Function Pin # Function Pin # Function Pin # Function

1 Flex I/O 33P 18 Flex I/O 42N 35 GND 52 GND

2 Flex I/O 34N 19 Flex I/O 41N 36 GND 53 GND

3 Flex I/O 33N 20 Flex I/O 42P 37 GND 54 GND

4 Flex I/O 34P 21 Flex I/O 53 38 GND 55 GND

5 Flex I/O 35P 22 Flex I/O 54 39 GND 56 GND

6 Flex I/O 36N 23 Flex I/O 55 40 GND 57 GND

7 Flex I/O 35N 24 Flex I/O 56

GND

41 GND 58 GND

8 Flex I/O 36P 25 Flex I/O 57 42 GND 59 GND

9 Flex I/O 37P 26 Flex I/O 58 43 GND 60 GND

10 Flex I/O 38N 27 Flex I/O 59 44 GND 61 GND

11 Flex I/O 37N 28 Flex I/O 60

GND

45 GND 62 GND

12 Flex I/O 38P 29 Flex I/O 61 46 GND 63 GND

13 Flex I/O 39P 30 Flex I/O 62 47 GND 64 GND

14 Flex I/O 40N 31 Flex I/O 63

GND

48 GND 65 GND

15 Flex I/O 39N 32 Flex I/O 64 49 GND 66 GND

16 Flex I/O 40P 33 User 3.3V 50 GND 67 User 3.3V

17 Flex I/O 41P 34 GND 51 GND 68 GND

Table 3-3: GX3701 J2 Flex IO Pin Out

P: positive differential I/O signal (e.g. Flex I/O 1P)

N: negative differential I/O signal (e.g. Flex I/O 1N)

Installation and Connections 33

GX3701 J3 – Flex I/O Connector

Pin# Function Pin# Function Pin# Function Pin# Function

1 Flex I/O 65 18 Flex I/O 82 35 GND 52 GND

2 Flex I/O 66 19 Flex I/O 83 36 GND 53 GND

3 Flex I/O 67 20 Flex I/O 84 37 GND 54 GND

4 Flex I/O 68 21 Flex I/O 85 38 GND 55 GND

5 Flex I/O 69 22 Flex I/O 86 39 GND 56 GND

6 Flex I/O 70 23 Flex I/O 87 40 GND 57 GND

7 Flex I/O 71 24 Flex I/O 88 41 GND 58 GND

8 Flex I/O 72 25 Flex I/O 89 42 GND 59 GND

9 Flex I/O 73 26 Flex I/O 90 43 GND 60 GND

10 Flex I/O 74 27 Flex I/O 91 44 GND 61 GND

11 Flex I/O 75 28 Flex I/O 92 45 GND 62 GND

12 Flex I/O 76 29 Flex I/O 93 46 GND 63 GND

13 Flex I/O 77 30 Flex I/O 94 47 GND 64 GND

14 Flex I/O 78 31 Flex I/O 95 48 GND 65 GND

15 Flex I/O 79 32 Flex I/O 96 49 GND 66 GND

16 Flex I/O 80 33 User 5V 50 GND 67 User 5V

17 Flex I/O 81 34 GND 51 GND 68 GND

Table 3-4: GX3701 J3 Flex IO Pin Out

34 GX3700 User’s Guide

GX3701 J4 – Flex I/O Connector

Pin# Function Pin# Function Pin# Function Pin# Function

1 Flex I/O 97 18 Flex I/O 114 35 GND 52 GND

2 Flex I/O 98 19 Flex I/O 115 36 GND 53 GND

3 Flex I/O 99 20 Flex I/O 116 37 GND 54 GND

4 Flex I/O 100 21 Flex I/O 117 38 GND 55 GND

5 Flex I/O 101 22 Flex I/O 118 39 GND 56 GND

6 Flex I/O 102 23 Flex I/O 119 40 GND 57 GND

7 Flex I/O 103 24 Flex I/O 120 41 GND 58 GND

8 Flex I/O 104 25 Flex I/O 121 42 GND 59 GND

9 Flex I/O 105 26 Flex I/O 122 43 GND 60 GND

10 Flex I/O 106 27 Flex I/O 123 44 GND 61 GND

11 Flex I/O 107 28 Flex I/O 124 45 GND 62 GND

12 Flex I/O 108 29 Flex I/O 125 46 GND 63 GND

13 Flex I/O 109 30 Flex I/O 126 47 GND 64 GND

14 Flex I/O 110 31 Flex I/O 127 48 GND 65 GND

15 Flex I/O 111 32 Flex I/O 128 49 GND 66 GND

16 Flex I/O 112 33 User 5V 50 GND 67 User 5V

17 Flex I/O 113 34 GND 51 GND 68 GND

Table 3-5: GX3701 J4 Flex IO Pin Out

The GX3701 J7 connector is for internal use only and is not user accessible.

Installation and Connections 35

GX3788 Connectors

These connectors exist only with the GX3788 daughter board card mounted on the GX3700/GX3700e.

Table 3-6: GX3788 Connectors

Connections to the GX3700/GX3788 may be made with 68-pin VHDCI male plug connector. Shielded cables with

matching connectors are available from Marvin Test Solutions.

The following section describes J1-J4 connectors:

GX3788 J1 – Flex I/O Bank A Connector

This connector has 31 differential channels (P used for Positive, N for Negative pins).

Pin

Function Pi

n#

Function Pi

n#

Function P

i

n

Function

1 DIO Port 0 Ch 0P 18 DIO Port 0 Ch 17P 35 DIO Port 0 Ch 0N 5

2

DIO Port 0 Ch 17N

2 DIO Port 0 Ch 1P 19 DIO Port 0 Ch 18P 36 DIO Port 0 Ch 1N 5

3

DIO Port 0 Ch 18N

3 DIO Port 0 Ch 2P 20 DIO Port 0 Ch 19P 37 DIO Port 0 Ch 2N 5

4

DIO Port 0 Ch 19N

4 DIO Port 0 Ch 3P 21 DIO Port 0 Ch 20P 38 DIO Port 0 Ch 3N 5

5

DIO Port 0 Ch 20N

5 DIO Port 0 Ch 4P 22 DIO Port 0 Ch 21P 39 DIO Port 0 Ch 4N 5

6

DIO Port 0 Ch 21N

6 DIO Port 0 Ch 5P 23 DIO Port 0 Ch 22P 40 DIO Port 0 Ch 5N 5

7

DIO Port 0 Ch 22N

7 DIO Port 0 Ch 6P 24 DIO Port 0 Ch 23P 41 DIO Port 0 Ch 6N 5

8

DIO Port 0 Ch 23N

8 DIO Port 0 Ch 7P 25 DIO Port 0 Ch 24P 42 DIO Port 0 Ch 7N 5

9

DIO Port 0 Ch 24N

9 DIO Port 0 Ch 8P 26 DIO Port 0 Ch 25P 43 DIO Port 0 Ch 8N 6

0

DIO Port 0 Ch 25N

10 DIO Port 0 Ch 9P 27 DIO Port 0 Ch 26P 44 DIO Port 0 Ch 9N 6

1

DIO Port 0 Ch 26N

11 DIO Port 0 Ch 10P 28 DIO Port 0 Ch 27P 45 DIO Port 0 Ch 10N 6

2

DIO Port 0 Ch 27N

12 DIO Port 0 Ch 11P 29 DIO Port 0 Ch 28P 46 DIO Port 0 Ch 11N 6

3

DIO Port 0 Ch 28N

13 DIO Port 0 Ch 12P 30 DIO Port 0 Ch 29P 47 DIO Port 0 Ch 12N 6

4

DIO Port 0 Ch 29N

14 DIO Port 0 Ch 13P 31 DIO Port 0 Ch 30P 48 DIO Port 0 Ch 13N 6

5

DIO Port 0 Ch 30N

15 DIO Port 0 Ch 14P 32 DIO Port 0 Ch 31P 49 DIO Port 0 Ch 14N 6

6

DIO Port 0 Ch 31N

16 DIO Port 0 Ch 15P 33 User 3.3V 50 DIO Port 0 Ch 15N 6

7

User 3.3V

17 DIO Port 0 Ch 16P 34 GND 51 DIO Port 0 Ch 16N 6

8

GND

Table 3-7: J1 Flex IO Bank A Pin Out

Connector Description

J1 Digital Port 0 Channels 0-31 Differential

J2 Digital Port 2 Channels 0-31

J3 Analog Input Channels 0-15 and Analog Output Channels 0-7

J4 Miscellaneous.

36 GX3700 User’s Guide

GX3788 J2 – Flex I/O Bank D Connector

Pin

Function Pin

Function Pin # Function Pin # Function

1 DIO Port 2 Ch 0 18 DIO Port 2 Ch 17 35 GND 52 GND

2 DIO Port 2 Ch 1 19 DIO Port 2 Ch 18 36 GND 53 GND

3 DIO Port 2 Ch 2 20 DIO Port 2 Ch 19 37 GND 54 GND

4 DIO Port 2 Ch 3 21 DIO Port 2 Ch 20 38 GND 55 GND

5 DIO Port 2 Ch 4 22 DIO Port 2 Ch 21 39 GND 56 GND

6 DIO Port 2 Ch 5 23 DIO Port 2 Ch 22 40 GND 57 GND

7 DIO Port 2 Ch 6 24 DIO Port 2 Ch 23 41 GND 58 GND

8 DIO Port 2 Ch 7 25 DIO Port 2 Ch 24 42 GND 59 GND

9 DIO Port 2 Ch 8 26 DIO Port 2 Ch 25 43 GND 60 GND

10 DIO Port 2 Ch 9 27 DIO Port 2 Ch 26 44 GND 61 GND

11 DIO Port 2 Ch 10 28 DIO Port 2 Ch 27 45 GND 62 GND

12 DIO Port 2 Ch 11 29 DIO Port 2 Ch 28 46 GND 63 GND

13 DIO Port 2 Ch 12 30 DIO Port 2 Ch 29 47 GND 64 GND

14 DIO Port 2 Ch 13 31 DIO Port 2 Ch 30 48 GND 65 GND

15 DIO Port 2 Ch 14 32 DIO Port 2 Ch 31 49 GND 66 GND

16 DIO Port 2 Ch 15 33 User 3.3V 50 GND 67 User 3.3V

17 DIO Port 2 Ch 16 34 GND 51 GND 68 GND

Table 3-8: J2 Flex IO Bank D Pin Out

Installation and Connections 37

GX3788 J3 – Flex I/O Bank B Connector

Pin# Function Pin# Function Pin# Function Pin# Function

1 Analog In 0 18 Analog In 15 35 COM1 52 COM2

2 Analog In 1 19 NC 36 COM1 53 AGND

3 Analog In 2 20 NC 37 COM1 54 AGND

4 Analog In 3 21 CAL_V 38 COM1 55 CAL_GND

I/O 61 5 Analog In 4 22 NC 39 COM1 56 NC

6 Analog In 5 23 NC 40 COM1 57 GND

7 Analog In 6 24 NC 41 COM1 58 GND

8 Analog In 7 25 Analog Out 0 42 COM1 59 AGND

9 NC 26 Analog Out 1 43 AGND 60 AGND

10 NC 27 Analog Out 2 44 AGND 61 AGND

11 Analog In 8 28 Analog Out 3 45 COM2 62 AGND

12 Analog In 9 29 Analog Out 4 46 COM2 63 AGND

13 Analog In 10 30 Analog Out 5 47 COM2 64 AGND

14 Analog In 11 31 Analog Out 6 48 COM2 65 AGND

15 Analog In 12 32 Analog Out 7 49 COM2 66 AGND

16 Analog In 13 33 User 5V 50 COM2 67 User 5V

17 Analog In 14 34 AGND 51 COM2 68 AGND

Table 3-9: J3 Flex IO Bank B Pin Out

38 GX3700 User’s Guide

GX3788 J4 – Flex I/O Bank C Connector

Pin# Function Pin# Function Pin# Function Pin# Function

1 NC 18 GND 35 GND 52 GND

2 NC 19 NC 36 GND 53 GND

3 NC 20 NC 37 GND 54 GND

4 NC 21 NC 38 GND 55 GND

5 NC 22 NC 39 GND 56 GND

6 NC 23 NC 40 GND 57 GND

7 NC 24 NC 41 GND 58 GND

8 NC 25 NC 42 GND 59 GND

9 NC 26 NC 43 GND 60 GND

10 NC 27 NC 44 GND 61 GND

11 NC 28 NC 45 GND 62 GND

12 NC 29 NC 46 GND 63 GND

13 NC 30 NC 47 GND 64 GND

14 NC 31 NC 48 GND 65 GND

15 NC 32 NC 49 GND 66 GND

16 NC 33 User 5V 50 GND 67 User 5V

17 NC 34 GND 51 GND 68 GND

Table 3-10: J4 Flex IO Bank C Pin Out

Installation and Connections 39

Jumpers

Table 3-11: GX3700 Jumpers

Figure 3-6 shows GX3700 board JP2, JP3, JP4 and JP5 jumpers (in red rectangular):

Figure 3-6: GX3700 – Front View Jumpers JP3-JP5 and JP2

Jumpers Description

JP2 Reserved. Normally disconnected.

JP3 Connect 3.3V to VCCIO for customer programmable FPGA. Normally connected.

JP4 Connect 2.5V to VCCIO for customer programmable FPGA. Normally disconnected.

JP5 Connect 1.2V to VCCIO for customer programmable FPGA. Normally disconnected.

40 GX3700 User’s Guide

Figure 3-7: GX3700e – Front View Jumpers JP3-JP5 and JP2

Installation and Connections 41

Figure 3-8: GX3700/GX3700e Jumpers JP3-JP5

Figure 3-9 shows GX3700 board JP2 Jumper:

Figure 3-9: GX3700/GX3700e Jumper JP2

JP2

JP3
JP4 JP5

42 GX3700 User’s Guide

Programming the Board 43

Chapter 4 - Programming the Board

This chapter contains information about how to program the GX3700 board using the GXFPGA driver.

The GXFPGA driver contains functions to initialize, reset, and control the board. A brief description of the

functions, as well as how and when to use them, is included in this chapter.

The GXFPGA driver supports many development tools. Using these tools with the driver is described in this

chapter. In addition, the GXFPGA directory contains examples written for these development tools.

The GXFPGA Driver

The GXFPGA DLL driver is provided with support for 32 bit Windows (GXFPGA.DLL) and 64 bit Windows

(GXFPGA64.DLL). Additional drivers are provided for other operating systems such as Linux and LabVIEW Real-

Time, see the readme file for more information regarding these drivers. The 32-bit DLL is used with 32 bit

applications running under Windows 32 or 64 bit and the 64-bit DLL runs on Windows 64 bit editions. The DLLs

uses device driver (HW provided by Marvin Test Solutions or VISA provided by a third-party vendor) to access the

board resources. The device driver HW includes HW.SYS and HW64.SYS is installed by the GXFPGA setup

program and is shared by other Marvin Test Solutions products (ATEasy, GTDIO, etc.).

The DLLs can be used with various development tools such as Microsoft Visual C++, Borland C++ Builder,

Microsoft Visual Basic, Borland Pascal or Delphi, ATEasy and more. The following paragraphs describe how to

create an application that uses the driver with various development tools. Refer to the paragraph describing the

specific development tool for more information.

Programming Using C/C++ Tools

The following steps are required to use the GXFPGA driver with C/C++ development tools:

 Include the GXFPGA.h header file in the C/C++ source file that uses the GXFPGA function. This header

file is used for all driver types. The file contains function prototypes and constant declarations to be used by

the compiler for the application.

 Add the required .LIB file to the projects. This can be import library GXFPGA.lib and GXFPGA64.lib (for

64 bit applications) for Microsoft Visual C++ and GXFPGABC.lib for Borland C++. Windows based

applications that explicitly load the DLL by calling the Windows LoadLibrary() API should not include

the .LIB file in the project.

 Add code to call the GXFPGA as required by the application.

 Build the project.

 Run, test, and debug the application.

Programming Using Visual Basic and Visual Basic .NET

To use the driver with Visual Basic 4.0 or above (for 32-bit applications), the user must include the GXFPGA.bas to

the project. The file can be loaded using Add File from the Visual Basic File menu. The GXFPGA.bas contains

function declarations for the DLL driver. If you are using Visual Basic .NET – use the GXFPGA.vb.

Programming Using Pascal/Delphi

To use the driver with Borland Pascal or Delphi, the user must include the GXFPGA.pas to the project. The

GXFPGA.pas file contains a unit with function prototypes for the DLL functions. Include the GXFPGA unit in the

uses statement before making calls to the GXFPGA functions.

44 GX3700 User’s Guide

Programming GXFPGA Boards Using ATEasy®

The GXFPGA package is supplied with a separate ATEasy driver for each board types. For example, the GX3700 is

supplied with GXFPGA.drv ATEasy driver. The ATEasy driver uses the GXFPGA.dll to program the board. In

addition, each driver is supplied with an example that contains a program and a system file pre-configured with the

ATEasy driver. Use the driver shortcut property page from the System Drivers sub-module to change the PXI HW

slot number or VISA resource string before attempting to run the example.

Using commands declared in the ATEasy driver are easier to use than using the DLL functions directly. The driver

commands will also generate exceptions that allow the ATEasy application to trap errors without checking the status

code returned by the DLL function after each function call.

The ATEasy driver contains commands that are similar to the DLL functions in name and parameters, with the

following exceptions:

 The nHandle parameter is omitted. The driver handles this parameter automatically. ATEasy uses driver

logical names instead i.e. FPGA1 for GX3700.

 The nStatus parameter was omitted. Use the Get Status commands instead of checking the status. After

calling a DLL function the ATEasy driver will check the returned status and will call the error statement (in

case of an error status) to generate exception that can be easily trapped by the application using the

OnError module event or using the try-catch statement.

Some ATEasy drivers contain additional commands to permit easier access to the board features. For example,

parameters for a function may be omitted by using a command item instead of typing the parameter value. The

commands are self-documented. Their syntax is similar to English. In addition, you may generate the commands

from the code editor context menu or by using the ATEasy’s code completion feature instead of typing them

directly.

Programming Using LabVIEW and LabVIEW/Real Time

To use the driver with LabVIEW use the provided lab view library GXFPGA.llb. The library is located in the

GXFPGA folder. An example for LabView is also provided in the Examples folder. A DLL located in the

LabViewRT folder can be used for deployment with LabVIEW/Real-Time.

Using and Programming under Linux

Marvin Test Solutions provides a separate software package GtLinux with Linux driver (Marvin Test Solutions

Drivers Pack for Linux). The software package can be downloaded from the Marvin Test Solutions website. See the

ReadMe.txt in that package for more information regarding using and programming the driver under Linux.

Programming the Board 45

Using the GXFPGA driver functions

The following paragraphs describe the steps required to program the boards.

Initialization, HW Slot Numbers and VISA Resource

The GXFPGA driver supports two device drivers HW and VISA which are used to initialize, identify and control the

board. The user can use the GxFpgaInitialize to initialize the board ‘s driver using HW and GxFpgaInitializeVisa

to initialize using VISA. The following describes the two different methods used to initialize:

1. Marvin Test Solutions’s HW – This is the default device driver that is installed by the GXFPGA driver. To

initialize and control the board using the HW use the GxFpgaInitialize(nSlot, pnHandle, pnStatus) function.

The function initializes the driver for the board at the specified PXI slot number (nSlot) and returns boards

handle. The PXI/PCI Explorer applet in the Windows Control Panel displays the PXI slot assignments. You

can specify the nSlot parameter in the following way:

 A combination of chassis number (chassis # x 256) with the chassis slot number, e.g. 0x105 for chassis

1 and slot 5. The chassis number can be set by the PXI/PCI Explorer applet.

 Legacy nSlot is used by earlier versions of HW/VISA. The slot number contains no chassis number and

can be changed using the PXI/PCI Explorer applet: 23 in this example.

Figure 4-1: PXI/PCI Explorer

2. VISA – This is a third-party library usually supplied by National Instruments (NI-VISA). You must ensure that

the VISA installed supports PXI and PCI devices (not all VISA providers supports PXI/PCI). GXFPGA setup

46 GX3700 User’s Guide

installs a VISA compatible driver for the GXFPGA board in-order to be recognized by the VISA provider. Use

the GXFPGA function GxFpgaInitializeVisa (szVisaResource, pnHandle, pnStatus) to initialize the driver’s

board using VISA. The first argument szVisaResource is a string that is displayed by the VISA resource

manager such as NI Measurement and Automation (NI_MAX). It is also displayed by Marvin Test Solutions

PXI/PCI Explorer as shown in the prior figure. The VISA resource string can be specified in several ways as

the following examples demonstrate:

 Using chassis, slot: “PXI0::CHASSIS1::SLOT5”

 Using the PCI Bus/Device combination: “PXI9::13::INSTR” (bus 9, device 9).

 Using the alias: for example, “COUNTER1”. Use the PXI/PCI Explorer to set the device alias.

Information about VISA is available at 189Hhttp://www.pxisa.org.

Board Handle

The GxFpgaInitialize and the GxFpgaInitializeVisa functions return a handle that is required by other driver

functions in order to program the board. This handle is usually saved in the program as a global variable for later use

when calling other functions. The initialize functions do not change the state of the board or its settings.

Reset

The Reset function sets the board to a known default state. A reset is usually performed after the board is initialized.

See the Function Reference for more information regarding the reset function.

Error Handling

All the GXFPGA functions returns status - pnStatus - in the last parameter. This parameter can be later used for

error handling. The status is zero for success status or less than zero for errors. When the status is error, the program

can call the GxFpgaGetErrorString function to return a string representing the error. The GxFpgaGetErrorString

reference contains possible error numbers and their associated error strings.

Driver Version

The GxFpgaGetDriverSummary function can be used to return the current GXFPGA driver version. It can be used

to differentiate between the driver versions. See the Function Reference for more information.

Programming Examples

The README.txt located on the GXFPGA folder contains a list of the GXFPGA programming examples provided

with the GXFPGA software. Examples are provided for various programming languages including C, VB.NET, VB

(6.0). ATEasy and more.

Distributing the Driver

Once the application is developed, the driver files (GXFPGA.dll, GXFPGA64.dll and the HW device driver files)

can be shipped with the application. Typically, the GXFPGA.dll should be copied to the Windows System directory.

The HW device driver files should be installed using a special setup program HWSETUP.EXE that is provided with

GXFPGA driver files (see Marvin Test Solutions\HW folder) or a standalone setup HW.exe. Alternatively, you can

provide the GXFPGA.exe setup to be installed along with the board.

http://www.pxisa.org/

GXFPGA Schematic Entry Tutorial 47

Chapter 5 - GXFPGA Schematic Entry Tutorial

Introduction

This tutorial will go over the basic workflow to start designing and loading a FPGA configuration for the Gx3700.

The example provides creation of a project using the schematic entry design method. The “Tutorial design top

reg.doc” contains the design register map.

The tutorial contents will entail:

 Downloading and installing the FPGA design tool

 Creating a new FPGA Design project with the Stratix III as the target device

 Setup the pin assignment to work with the GX3700 and Stratix III FPGA

 Use the design tool to create an example FPGA configuration

 Compile the project and generate the SVF and RPD programming files

 Loading the board with the generated programming files

 Testing the design using the Gx3700 Front Panel software and ATEasy

 The example configuration is broken down into three phases, each with a distinct function:

 Phase 1: Take two values located in PCI Registers and generate a Sum (Adder) which can then be read

through a third PCI Register.

 Phase 2: 2 to 1 multiplexer to choose between the 10 MHz Clock and the PCI Clock which will be

output on one of the FlexIO pins. The clock will be selected through a PCI Register.

 Phase 3: A simple dynamic digital sequencer with a memory depth of 32 double words (written to

through the PCI bus) driven by a PLL that continuously outputs digital patterns to the 32 FlexIO pins

on J2 connector.

 The source code for the examples in this chapter is provided in the Examples\Quartus\Gx3700 folder.

Downloading Altera Design FPGA Design Tools

The Marvin Test Solutions Gx3700 User programmable FPGA board can be designed using the free Altera Quartus

II Web Edition or Subscription Edition design tool. This FPGA design tool allows end users to generate fully

featured FPGA designs that can be downloaded to the Gx3700 board using the Marvin Test Solutions GXFPGA

software API or software front panel. Other 3rd party tools can also be used to design the FPGA. Before proceeding

with this tutorial, you must have Altera Quartus II v11.0 SP1 installed on your PC. More information about this tool

and how to download it can be found at http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-

index.html.

http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html

48 GX3700 User’s Guide

Create New Project

Figure 5-1: Quartus II Start Dialog

After installing Quartus II Web Edition, start the application and select Create a new Project to start the New

Project Wizard or select File, New, New Quartus Project.

Click on Next and then select the Project Folder and enter tutorial_design_top as the project name.

Click on Next twice (skip the adding files window).

Device Selection

The next window will allow you to select the FPGA target device. Select Stratix III as the Family and

EP3SL50F780C3 when using the GX3700 or EP3SL70F780C3 for the GX3700e. For newer GXFPGA boards, the

device ID will be displayed in the instrument front panel About page.

Click on Next twice (skip the Specify Tools window).

A window summarizing all the choices made for the creation of this project is shown. Click on Finish.

GXFPGA Schematic Entry Tutorial 49

Pin Assignment Setup

You should now have an empty skeleton project loaded in Quartus II. Before you can get started on the FPGA

design, you must assign the FPGA pins distinct names so that you can reference them in your design. This can be

accomplished by running a TCL script which contains all the information necessary to configure the pin

assignments as well as settings the project to e either schematic entry or Verilog entry. These pin assignments are

unique to this Stratix III FPGA and the GX3700 in particular. The following table lists all the pin assignments and

their respective descriptions. The Pin Alias’s listed in the table are the pin names you will be using in your design to

reference the actual hardware pins on the FPGA.

Pin Assignments Table

Pin Alias (Node Name) Description

Clocks

10Mhz Input. 10 MHz Reference Clock Signal from the PXI Backplane

PCIClock Input. 33 MHz PCI Bus clock or 125MHz PCI Express application clock.

RefClk Input. 80 Mhz Reference Clock onboard the GX3700

PCI Bus

Addr[2..19] Input. The PCI Address lines from the PCI bus

FDt[0..31] Bidir. PCI Data lines from the PCI bus

CS[1..3]

Input. Chip Select lines from the PCI bus.

CS[1] is for FPGA registers, CS[2] is for internal SRAM, CS[3] is currently not used.

LEXT Input. External SRAM chip select. This is chip select for external SRAM on PCB.

RdEn Input. PCI Read Enable line from the PCI bus

WrEn Input. PCI Write Enable line from the PCI bus

LREAD_DV Output. Read data valid. This is data valid for FDt(31:0) data bus.

LUW Input. Currently not used. Upper Word.

LLW Input. Currently not used. Lower Word.

LRESET Input. Currently not used. Reset coming from PXI bridge FPGA.

PXI Bus

PxiTrig[0..7] Bidir. PXI Bus trigger signals

StarTrig

Output. PXI Star Trigger signal. This signal can be re-defined by the user as bi-

directional.

PXI_LBL6 Bidir. PXI Local Bus Left 6. This is local bus according to PXIe spec.

PXI_LBR6 Bidir. PXI Local Bus Right 6. This is local bus according to PXIe spec.

PXIe_DSTARA Input. PXIe DSTAR trigger A. This is DSTAR trigger according to PXIe spec.

PXIe_DSTARB Input. PXIe DSTAR trigger B. This is DSTAR trigger according to PXIe spec.

PXIe_DSTARC Output. PXIe DSTAR trigger C. This is DSTAR trigger according to PXIe spec.

PXIE_100M Input. PXIe 100MHz clock. This is 100MHz clock according to PXIe spec.

PXIE_SYNC100 Input. PXIe Sync100. This is Sync100 signal according to PXIe spec.

I/O

FlexIO[1..160] Bidir. The physical IO Channels including 4 global clock inputs (2 differential pairs).

50 GX3700 User’s Guide

External Flash

Fsm_a[1..23] Output. Address bus shared by external SRAM and flash.

Fsd[0..31] Bidir. Data bus shared by external SRAM and flash.

Flash_ce_n Output. Flash chip enable.

Flash_oe_n Output. Flash output enable.

Flash_we_n Output. Flash write enable.

Flash_reset_n Output. Flash chip reset

Flash_byte_n Output. Flash byte/word select.

Flash_busy_n Input. Flash busy

External SRAM

Sram_be_n[0..3] Output. External SRAM byte enable.

Sram_ce_n Output. External SRAM chip select.

Sram_oe_n Output. External SRAM output enable.

Sram_we_n Output. External SRAM write enable.

RX DMA FIFO I/F

RX_DMA_DAT[0..31] Input. Receive DMA data coming from PC host.

RX_DMA_DV Input. Receive DMA data valid.

RX_DMA_FIFOFULL Output. Receive DMA FIFO full. This will throttle data from PC host.

RX_DMA_SP1 Output. Spare. Currently not used.

RX_DMA_SP2 Output. Spare. Currently not used.

TX DMA FIFO I/F

TX_DMA_DAT[0..31] Output. Transmit DMA data from memory going to PC host.

TX_DMA_DV Output. Transmit DMA data valid.

TX_DMA_FIFOEMPTY

Output. Transmit DMA FIFO empty. When empty and is sending data to PC host, the

DMA engine in PXI bridge FPGA will assert FIFO read enable TX_DMA_FIFO_RD.

TX_DMA_FIFO_RD Input. Transmit DMA FIFO read enable.

Misc

Spare[0..7] Bidir. Do Not Use. Spares connected to PXI bridge FPGA.

IRQ Output. Interrupt output pin going to PXI bridge FPGA

IRQ = 1 means interrupt will be generated to PC host.

IRQ = 0 means no interrupt.

FSpr[0..3] Bidir. Spare Signals connected to Expansion Board

MClr Input. FPGA Master Clear, Active High

TP[0..5] Bidir. Connected to test header J7 on the GX3700 PCB

ACTIVE_LED_N Output. Active LED. Connect to LD1 LED on board. ‘0’ = LED on, ‘1’ = LED off.

Table 5-1: Pin Assignments Table

GXFPGA Schematic Entry Tutorial 51

Schematic entry project

In order to configure the project as schematic entry and configure the pin assignment the TCL configuration script

should be added to the project. To add the script to the project, click on Project | Add/Remove Files in Project…

In the dialog box, click on the … button and browse for GX3700Schem.tcl file in the “C:\Program Files\Marvin Test

Solutions\GxFpga\” folder. On some systems, it is recommended to move the desired TCL file to your project’s

source location prior to adding it to the project. Click Open and then the Add button.

Figure 5-2: Add Tcl Script to Project

Then click on Tools | TCL Scripts … Select the configuration script file, GX3700Schem.tcl and click on Run. This

will configure your FPGA pin assignments.

Note: The TCL file will automatically add all the source files needed for the tutorial design to the Quartus II project.

You can view the pin assignments by running the Pin Planner application which is found in the Tasks list as

highlighted below:

52 GX3700 User’s Guide

Figure 5-3: Task Flow

The Pin Planner will display a matrix of the physical FPGA pins and their mapped names as well as the I/O standard

supported by the pin. These mapped names are used in the FPGA design, as wire names and I/O pins, to connect to

the physical connections of the FPGA.

GXFPGA Schematic Entry Tutorial 53

Creating Design File with Schematic Entry

At this point you will have successfully created an FPGA design based on the source codes provided. This section

will walk you through the steps of creating your own source file using schematic entry.

Note: There is more than one way to accomplish the following designs.

Phase 1: Creating the FPGA design - 32 bit Full Adder

This design will take two double word (32 bit) values, located in the first two double words in the Register space

(byte offset 0x0 and 0x4), and add them together. The sum of the two values will be immediately output to the third

double word in the Register space (byte offset 0x8).

Components Used

1x 32 bit Full Adder

1x Decoder

2x D Flip Flops

1x Tristate Buffer

2x AND Gate

1x Constant

Figure 5-4: Phase 1 Adder Components

54 GX3700 User’s Guide

Schematic view

In order to open the schematic view, click on File menu, and then New the following dialog appears.

Select Block Diagram/Schematic File:

Figure 5-5: Open Schematic view Dialog Box

GXFPGA Schematic Entry Tutorial 55

Design

First start with creating the circuitry required to decode the PCI Address when data is to be written from the PC to

the FPGA. This circuit will be used in all three functions of this example project. The signals required for PCI Write

access will be the PCI Clock, Write Enable, Chip Select 1, and some PCI Address lines. The PCI Address lines 5

to 2 will be fed to a decoder which will generate a 32-bit value, and the result will be ANDed with the Chip Select 1

bit. Each Chip Select bit represents a certain PCI BAR access (GX3700 has two bars, memory and register

memories). Bit 1 represents BAR1 of the PCI memory space (bit 2 for BAR2). BAR1 is the general-purpose Control

Register BAR for the GX3700. The results of the AND operation will be once again ANDed to the Write Enable

PCI signal.

Double click on the blank space in the schematic view and select lpm_decode from the Megafunction, Gates

directory.

Figure 5-6: Symbol Insert Dialog Box

Make sure the Launch MegaWizard Plug-In checkbox is unchecked.

Click OK and place the symbol on the blank design document.

56 GX3700 User’s Guide

Now that the Decoder has been placed, some of its parameters have to be set. Right click on the Decoder symbol and

select Properties. Click on the Parameters tab. Set the Width and Decodes properties as shown below:

Figure 5-7: Decoder Properties

Click OK when done. Place another symbol on the design by double clicking on the design document, and selecting

Input Pin from Primitives, Pin, Input. After placing the input pin symbol, rename it to Addr[6..2]. The symbol

will now represent 5 PCI address lines that will be used to communicate with the PC.

GXFPGA Schematic Entry Tutorial 57

Also place 2 AND gates after the Decoder and a few more input pins with the appropriate names DecAddr, Sel and

WE as the following figure shows:

Figure 5-8: PCI Address Decoder Circuit

Note: To wire several signals together (as a bus), such as Addr[6..2] or Sel[31..0], use the Bus Wiring Tool

highlighted in red below. We use two D-Flip-Flops to clean up the signal going into our design before we use it.

Figure 5-9: Bus Wiring Tool

Now that the PCI address decoder circuit is complete, we can feed the appropriate bits from the WE bus to D Flip

Flops that will store data clocked in from the PCI data lines. For example, the first double word in PCI memory

(representing the first number to be summed) will be written to a D Flip Flop with its enable line tied to WE[0] (the

first bit in the WE bus). The second double word to be added will be written to another D Flip Flop with its enable

line tied to WE[1]. Finally, the PCI Clock signal (33Mhz) will be used as the clock source of the D Flip Flops. Note

that each bit of the Sel and WE busses represent a consecutive double word address (bit 0 corresponds with byte 0,

bit 1 corresponds with byte 4, bit 2 corresponds with byte 8 etc.)

Place two D Flips Flops (located at primitives, storage, dffe) and an input pin named PCIClock. We will leave the

D Flip Flops input lines (D) disconnected for now. Eventually the PCI data lines will drive these inputs.

Wire the output of the AND gate to D Flips Flops as shown below.

58 GX3700 User’s Guide

Figure 5-10: D Flip Flops

The D Flips Flops will feed a 32-bit adder and the resulting summation will be wired to the PCI data lines so that the

PC can read the result.

The 32-bit adder will be placed onto the design using the MegaFunction wizard tool. This tool will customize a

component by allowing you to make selections through a wizard.

Double click on the design window and navigate to megafunctions, arithmetic, lpm_add_sub. Make sure the

Launch Megafunctions Wizard checkbox is selected and click OK. You will see a dialog box like the following:

GXFPGA Schematic Entry Tutorial 59

Figure 5-11: Adder Wizard

Name the output file SimpleAdder and make sure the path is the same as your project. Click Next and enter 32 as

the data width.

60 GX3700 User’s Guide

Figure 5-12: Adder Wizard 2

Click Next through the rest of the wizard and keep the default choices. Finally, the dialog box will show the newly

created design files that will be included in your project. Click Finish and place the newly created Adder in your

design.

GXFPGA Schematic Entry Tutorial 61

Wire the adder to the flip flops and add an AND gate, Read Enable pin, and tristate buffer as the following shows:

Figure 5-13: Adder Circuit

Note that we are using the FDt[31..0] PCI data lines as bidirectional pins since we will be reading and writing to the

PCI bus. The Tristate buffer is used to select whether the Adder will be driving the PCI Data lines or not. The

Tristate buffer is controlled by the 3rd bit of the decoded PCI Address ANDed with the Read Enable line. When both

signals are high (Sel[2] and RdEn) it indicates that the PCI Bus is expecting the 3rd double word to be written to the

PCI bus. In our case, this means the 32-bit result from the Adder.

Before moving on we must first extend the RdEn to 2 PCI clock cycles by adding a small circuit as demonstrated

below:

Figure 5-14: RdEn to 2 PCI Circuit

We also create a Read Data Valid output pin, LREAD_DV. This comes from a D-Flipflop with the PCIClock as an

input clock and the RdEn as the input data. The D-Flipflop also creates our extender for our ReadEnable.

Since this design is created to be able to be implemented in both the 3700 and the 3700e, we need to extend our

write enable pins, WE[31..0], and read enable pins, RE[31..0], for 3 more clock cycles. Below is the circuit to do

that.

62 GX3700 User’s Guide

Figure 5-15: RE[31..0] and WE[31..0] extend Circuit

The inputs to the D Flips Flops can now be wired to the PCI data lines (FDt). We need to clean up the FDt signal as

is comes back into our circuit by adding the D-FlipFlop.

Figure 5-16: Adder Circuit with PCI Bus Connection

Now that the design has been completed, a revision number should be added so that the end user can read it back

from the PCI bus at the 32nd register double word location (byte address 0x7C).

Including a revision number constant to the design is a Marvin Test Solutions standard practice that we recommend

end users to follow. The revision constant is 32 bits long and is read as a hexadecimal number such as 0x3564A000.

The first two digits of the hexadecimal number represent the company, in this case 35 is for Marvin Test Solutions

designs. The next two digits are the design specific code, 64 in this case. And the last 4 digits, A000, is the revision

of the design.

GXFPGA Schematic Entry Tutorial 63

 A constant component needs to be placed in the design (LPM_CONSTANT). When placing this component make

sure that the “Launch MegaWizard Plug-In” selection is unchecked. After placing the component, right click on it

and select properties to set the value and width of the constant as the following figures show:

Figure 5-17: Symbol Properties

Now place the 2 port AND gate and the tri-state buffer. You can rotate it, as shown in Figure 5-17: Symbol

Properties, by right clicking on the symbol (after placing it) and select “Rotate By Degrees | 90”.

64 GX3700 User’s Guide

Figure 5-18: Adder Circuit with Revision Constant

GXFPGA Schematic Entry Tutorial 65

Finally, you can change the inputs to the adder from write-only to read/write by connecting the output of the D-

Flipflops to the FDt inout pin via a tristate buffer. After adding this buffer, the complete adder circuit should appear

as below:

Figure 5-19: Completed Adder Circuit

66 GX3700 User’s Guide

Phase 2: Creating the FPGA Design - 2 to 1 Clock Mux

This design will output either the PCI Clock (33Mhz) or the 10Mhz clock to Flex I/O Channel 65 (check the

connector tables to find the pin number) depending on what was written to the 4th double word in the PCI register

space (byte offset 0xC). A 1 will select the 10Mhz clock signal, and a 0 will select the PCI clock signal.

Components Used

1x 2 to 1 Mux

1x D Flip Flops

Figure 5-20: Phase 2 Mux Components

Design

You will now build upon the tutorial project to add the functionality of a 2 to 1 Clock Mux. The 10Mhz clock will

be brought into the design by an input pin. The PCI Clock signal input pin is already present in the Phase 1 circuit,

so this will be reused. FlexIO[65] (IO Channel 65) will be used to output the selected clock to the outside world.

Place the 2 to 1 Mux symbol by double clicking on the design area and selecting megafuncitons others, maxplus2,

mux21.

Create three wires attached to the D, ENA(enable) and B inputs of the D Flip Flop. Name the wires FDt[0], Sel[3],

and PCIClock respectively. Note that you did not have to place new input pins to access these signals. This is due to

the fact that input pins were already created for these signals in the Phase 1 design. Therefore, you can just use

named wires to tap into the same input pins.

Figure 5-21: Clock Mux Circuit

FDt[0] is the first bit of the PCI data bus. This bit can either be 0 or 1, to indicate which clock source to choose.

Sel[3] is the 4th bit from the decoded PCI Address. When this bit is high, it indicates that the PCI Bus is addressing

the 4th double word (byte offset 0xC) of the Register space for the GX3700. In our case, the value of this double

word is used to select which clock is selected by our Mux.

GXFPGA Schematic Entry Tutorial 67

Phase 3: Creating the FPGA Design - 32 bit Dynamic Digital Pattern Sequencer

Components Used

1x PLL

1x 5 bit Counter

1x 32 by 32 bit RAM

1x AND gate

Figure 5-22: Phase 3 Dynamic Digital Sequencer Components

Design

This design functions as a simple dynamic digital pattern generator. A PLL drives a Counter which iterates through

a 32-double word memory that outputs 32 bit wide digital patterns to the I/O Pins. The memory is loaded through

the PCI bus, allowing users to program the device with vectors through the software front panel or the DLL API.

This phase will require the use of the MegaFunction Wizard to generate all three components, PLL, RAM, and

counter. The wizard will allow you to customize the component for this particular application. The generated

component will be stored in a file (.qip) that will automatically be included in the project.

First insert the PLL component by double clicking on an empty space in the design and clicking on MegaFunction

Plug-In Manager. Choose to create a new MegaFunction variation and click Next. Then select the symbol called

ALTPLL under the I/O folder. Name the new variation SimplePLL and click Next. The next dialog box will

prompt you for the input clock frequency. We will be using a 10Mhz reference clock source so enter 10Mhz into

this field.

68 GX3700 User’s Guide

Figure 5-23: PLL Wizard Dialog Box 1

Proceed through the next few screens, with the default choices until you get to step 3 in the wizard entitled Output

Clocks. Select 50 as the division factor as shown in the following figure:

Figure 5-24: PLL Wizard Dialog Box 2

Click Next for the rest of the windows until you get to the last window showing you the files that will be created and

then click Finish. The customized component will now be included in your project automatically so that you can

start using it. Click OK to return to the design view, and then place the newly created symbol on your design.

Attach a wire to the inclk0 terminal of the PLL symbol, and name the wire 10Mhz. This will connect the wire to the

10Mhz input pin that has already been created in the phase 2 design.

Repeat the previous steps to create a new custom component using the MegaFunction Wizard and select

LPM_COUNTER from the arithmetic folder. Name the custom component SimpleCounter and click next. Select 5

bits for the output bus width. We have chosen 5 bits for the width because we need to count from 0 to31 which

requires 5 bits. You can now click next for the rest of the windows and finally click finish to place the symbol on

your design.

GXFPGA Schematic Entry Tutorial 69

Wire the c0 output terminal from the PLL to the clock input on the counter.

Figure 5-25: PLL and Counter Circuit

The last component needed is a 32 double word RAM. You will need to deploy the MegaFunction Wizard once

again, and select the 2 port RAM component from the Memory Compiler folder. Call the new component file

SimpleRAM and click Next. Make sure to select 32 as the word length and 32 as the input width as the following

figure shows:

Figure 5-26: RAM Wizard Dialog Box 1

In the next window make sure to select a dual clock for reading and writing so that data can be written to the RAM

from the PCI bus and read out to the IO pins concurrently.

Figure 5-27: RAM Wizard Dialog Box 2

Click Next on the rest of the windows and click Finish placing the RAM component on your design. Wire the

output bus, q[4..0], from the counter to the read address, rdaddress[31..0], of the RAM component.

Connect a bus to data[31..0] and wraddress[4..0]. Name these busses FDt[31..0] and Addr[6..2] respectively. Then

connect wires to wrclock and rdclock and name the wires PCIClock, and 10Mhz respectively.

You will need to place an AND gate next to the RAM component and wire a new input pin called CS[2] and a wire

named WrEn to it. The output of the AND gate should be connected to the wren input of the RAM. This AND logic

ensures that only BAR2 PCI accesses are able to write to the RAM. This will allow us to use the FGPA Memory

70 GX3700 User’s Guide

space to write out digital patterns to the sequencer instead of the FPGA Register space (which is being used for

control). Note that when CS[2] is high, it signifies an access from BAR2.

Finally create a bus connected to the q[31..0] output from the RAM and name it FlexIO[64..33]. This connects the

RAM output to the 32 physical IO pins.

Figure 5-28: Dynamic Digital Sequencer Circuit

At this point the design is complete, continue with the next sections to generate SVF or RPD files and load your

design to the GX3700.

GXFPGA Schematic Entry Tutorial 71

Configure Project to Output SVF and RPD Files

To ensure that a SVF file is generated upon project compilation, go to the Assignments, Device ... and click on the

Device and Pin Options button. Then click on the Programming Files and verify that the Serial Vector Format

File checkbox has been selected.

Figure 5-29: Select SVF as output file

Now click on the Configuration choose Active Serial Configuration Scheme, check Use Configuration Device

checkbox and select EPCS64 as the configuration device from the drop down selection. Finally click on OK twice

to exit the settings dialog boxes.

72 GX3700 User’s Guide

Figure 5-30: Select Configuration Device

GXFPGA Schematic Entry Tutorial 73

Compile an Example Project and Build RPD and SVF Files

Click on Processing menu tab and choose Start Compilation to start the compilation process for the example

project. After the process has ran successfully, you should now see in Quartus II something similar to the figure

below. The green check marks indicate success and the red X indicates failure. The process will succeed only when

there is no error. There may or may not be any warning. If there is any warning, make sure that it is OK for the

design before moving forward. For this tutorial design, ignore all warnings.

Figure 5-31: Compilation Tools and Status

The SVF file will be generated after the project compilation has finished. The Compilation Task window will show

green check marks next to each major task to indicate completion.

74 GX3700 User’s Guide

In order to generate RPD file go to File, Convert Programming Files …

Select Raw Programming Data File (.rpd) as the Programming file type and tutorial_design_top.rpd as the File

Name. Click on the Add File button and select tutorial_design_top.pof. The .pof file should now appear below the

POF Data node as shown below. Finally, click the Generate button to create the RPD file.

Figure 5-32: Convert Programming Files Dialog Box

GXFPGA Schematic Entry Tutorial 75

Simulating the Design

To simulate the design, we will use ModelSim application from Altera. You can download the software for free

form the Altera website. There is a test bench for this tutorial that is already created for you inside the

GXFPGA\Examples\Quartus\GX3700\Tutorial.

Follow these steps to simulate the design:

1. Open the ModelSim application:

Figure 5-33: ModelSim Main Window

76 GX3700 User’s Guide

2. Click File Change Directory and choose the sim folder under the Tutorial folder. At this point the ModelSim

should display the simulation pins:

Figure 5-34: ModelSim Tutorial Simulation

GXFPGA Schematic Entry Tutorial 77

3. Click Tools TclExecute Macro… and choose sim.tcl, and click Open. When ModelSim asks to close the

current project, click Yes. The screen should appear like the screen below:

Figure 5-35: Simulation of Design

78 GX3700 User’s Guide

Load Gx3700 with SVF File

Start the GX3700 Panel (from the Windows Start menu, Marvin Test Solutions, GxFpga) and initialize the

instrument. Next, click on the Volatile radio box and then click on the Browse Button (…) to select the newly

generated SVF file (tutorial_design_top.svf). Finally click on the Load button to begin programming the card. You

will see the progress bar indicate the status of the load. Once the load has completed, the status bar should be

unfilled.

Figure 5-36: Software Front Panel

GXFPGA Schematic Entry Tutorial 79

Testing the Design

Now that the design has been completed, compiled and loaded into the GX3700, we can move on to the testing.

There are two ways to access the FPGA, either through the software front panel or through the driver API DLL. We

will demonstrate the programming method using ATEasy to access the driver API DLL.

Adder Testing

The software front panel will be used to test Phase 1 of the design which adds two 32 bit numbers together. Click on

the I/O Tab to get started. The Adder phase is controlled through the FPGA Register space.

Offset 0x0 points to the first 32-bit number that will be summed and offset 0x4 points to the second 32-bit number

that will be summed. Write values to both these locations.

The sum can be obtained by reading the 32-bit value at offset 0x8. Verify that the correct sum is read back as shown

in Figure 5-31:

Figure 5-37: Using the Software Front Panel to read back the Sum

Clock Mux Testing

The software front panel will once again be used to test Phase 2 of the design. This part of the design uses a Mux to

select between the PCI Clock and the 10 Mhz reference clock. The selected clock is output to I/O Channel 63 which

80 GX3700 User’s Guide

is located on pin 31 on the Flex I/O J2 connector of the GX3700. The Mux is controlled through the FPGA Register

space.

Writing a 0x0 to offset 0xC will route the PCI/PCIe Clock signal to I/O Channel 63. Writing 0x1 to the same offset

will route the 10 Mhz clock to this same channel. Try switching between both values while monitoring pin 31 of J2

with an oscilloscope. You should see the appropriate clock signals.

Digital Sequencer Testing

For this test, connect an oscilloscope to I/O Channel 65 (pin 1 of J3) to monitor the output signal of the sequencer.

You can access the FPGA memory through the software front panel or through ATEasy. When using the software

front panel, write values to the first 32 double words of the FPGA Memory space (offsets 0x0, 0x4, 0x8, 0xC etc).

As you write to these locations, the data patterns being output on I/O Channel 1 should be updating dynamically. If

you fill the 32-double word memory with a clock pattern (alternating 1’s and 0’s), you should be able to measure a

frequency of 100Khz.

When using ATEasy, include the GxFPGA.drv driver and set it up with the correct slot number. Add a variable

called i of type long. You can then run the following code to write to the FPGA memory:

REDIM adwData[32]

adwData[0] = 1

For i=0 to 31

 FPGA Write Memory(i*4, 4, adwData[i])

Next

This code will set the first double word to 1 and the rest to 0‘s resulting in a frequency of 6.25 Khz.

GXFPGA Verilog Tutorial 81

Chapter 6 - GXFPGA Verilog Tutorial

Introduction

This tutorial will go over the basic workflow to start designing and loading a FPGA configuration for the Gx3700.

The example provides creation of a project using Verilog sources and coding. The “Tutorial design top reg.doc”

contains the design register map.

The tutorial contents will entail:

 Downloading and installing the FPGA design tool

 Creating a new FPGA Design project with the Stratix III as the target device

 Setup the pin assignment to work with the GX3700 and Stratix III FPGA

 Use the Quartus IDE to import and design an example FPGA configuration

 Compile the project and generate the SVF and RPD programming files

 Loading the board with the generated programming files

 Testing the design using the Gx3700 Front Panel software and ATEasy

 The example configuration is broken down into three phases, each with a distinct function:

 Phase 1: Take two values located in PCI Registers and generate a Sum (Adder) which can then be read

through a third PCI Register.

 Phase 2: 2 to 1 multiplexer to choose between the 10 MHz Clock and the PCI Clock which will be

output on one of the FlexIO pins. The clock will be selected through a PCI Register.

 The source code for the examples in this chapter is provided in the Examples\Quartus\Gx3700 folder.

Downloading Altera Design FPGA Design Tools

The Marvin Test Solutions Gx3700 User programmable FPGA board can be designed using the free Altera Quartus

II Web Edition or Subscription Edition design tool. This FPGA design tool allows end users to generate fully

featured FPGA designs that can be downloaded to the Gx3700 board using the Marvin Test Solutions GXFPGA

software API or software front panel. Other 3rd party tools can also be used to design the FPGA. Before proceeding

with this tutorial, you must have Altera Quartus II v11.0 SP1 installed on your PC. More information about this tool

and how to download it can be found at http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-

index.html.

http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html

82 GX3700 User’s Guide

Create New Project

Figure 6-1: Quartus II Start Dialog

After installing Quartus II Web Edition, start the application and select Create a new Project to start the New

Project Wizard or select File, New, New Quartus Project.

Click on Next and then select the Project Folder and enter tutorial_design_top as the project name.

Click on Next twice (skip the adding files window).

Device Selection

The next window will allow you to select the FPGA target device. Select Stratix III as the Family and

EP3SL50F780C3 when using the GX3700 or EP3SL70F780C3 for the GX3700e. For newer GXFPGA boards, the

device ID will be displayed in the instrument front panel About page.

Click on Next twice (skip the Specify Tools window).

A window summarizing all the choices made for the creation of this project is shown. Click on Finish.

GXFPGA Verilog Tutorial 83

Pin Assignment Setup

You should now have an empty skeleton project loaded in Quartus II. Before you can get started on the FPGA

design, you must assign the FPGA pins distinct names so that you can reference them in your design. This can be

accomplished by running a TCL script which contains all the information necessary to configure the pin

assignments as well as settings the project to either schematic entry or Verilog entry. These pin assignments are

unique to this Stratix III FPGA and the GX3700 in particular. The following table lists all the pin assignments and

their respective descriptions. The Pin Alias’s listed in the table are the pin names you will be using in your design to

reference the actual hardware pins on the FPGA.

Pin Assignments Table

Pin Alias (Node Name) Description

Clocks

10Mhz Input. 10 MHz Reference Clock Signal from the PXI Backplane

PCIClock Input. 33 MHz PCI Bus clock or 125MHz PCI Express application clock.

RefClk Input. 80 Mhz Reference Clock onboard the GX3700

PCI Bus

Addr[2..19] Input. The PCI Address lines from the PCI bus

FDt[0..31] Bidir. PCI Data lines from the PCI bus

CS[1..3]

Input. Chip Select lines from the PCI bus.

CS[1] is for FPGA registers, CS[2] is for internal SRAM, CS[3] is currently not used.

LEXT Input. External SRAM chip select. This is chip select for external SRAM on PCB.

RdEn Input. PCI Read Enable line from the PCI bus

WrEn Input. PCI Write Enable line from the PCI bus

LREAD_DV Output. Read data valid. This is data valid for FDt(31:0) data bus.

LUW Input. Currently not used. Upper Word.

LLW Input. Currently not used. Lower Word.

LRESET Input. Currently not used. Reset coming from PXI bridge FPGA.

PXI Bus

PxiTrig[0..7] Bidir. PXI Bus trigger signals

StarTrig

Output. PXI Star Trigger signal. This signal can be re-defined by the user as bi-

directional.

PXI_LBL6 Bidir. PXI Local Bus Left 6. This is local bus according to PXIe spec.

PXI_LBR6 Bidir. PXI Local Bus Right 6. This is local bus according to PXIe spec.

PXIe_DSTARA Input. PXIe DSTAR trigger A. This is DSTAR trigger according to PXIe spec.

PXIe_DSTARB Input. PXIe DSTAR trigger B. This is DSTAR trigger according to PXIe spec.

PXIe_DSTARC Output. PXIe DSTAR trigger C. This is DSTAR trigger according to PXIe spec.

PXIE_100M Input. PXIe 100MHz clock. This is 100MHz clock according to PXIe spec.

PXIE_SYNC100 Input. PXIe Sync100. This is Sync100 signal according to PXIe spec.

I/O

FlexIO[1..160] Bidir. The physical IO Channels including 4 global clock inputs (2 differential pairs).

84 GX3700 User’s Guide

External Flash

Fsm_a[1..23] Output. Address bus shared by external SRAM and flash.

Fsd[0..31] Bidir. Data bus shared by external SRAM and flash.

Flash_ce_n Output. Flash chip enable.

Flash_oe_n Output. Flash output enable.

Flash_we_n Output. Flash write enable.

Flash_reset_n Output. Flash chip reset

Flash_byte_n Output. Flash byte/word select.

Flash_busy_n Input. Flash busy

External SRAM

Sram_be_n[0..3] Output. External SRAM byte enable.

Sram_ce_n Output. External SRAM chip select.

Sram_oe_n Output. External SRAM output enable.

Sram_we_n Output. External SRAM write enable.

RX DMA FIFO I/F

RX_DMA_DAT[0..31] Input. Receive DMA data coming from PC host.

RX_DMA_DV Input. Receive DMA data valid.

RX_DMA_FIFOFULL Output. Receive DMA FIFO full. This will throttle data from PC host.

RX_DMA_SP1 Output. Spare. Currently not used.

RX_DMA_SP2 Output. Spare. Currently not used.

TX DMA FIFO I/F

TX_DMA_DAT[0..31] Output. Transmit DMA data from memory going to PC host.

TX_DMA_DV Output. Transmit DMA data valid.

TX_DMA_FIFOEMPTY

Output. Transmit DMA FIFO empty. When empty and is sending data to PC host, the

DMA engine in PXI bridge FPGA will assert FIFO read enable TX_DMA_FIFO_RD.

TX_DMA_FIFO_RD Input. Transmit DMA FIFO read enable.

Misc

Spare[0..7] Bidir. Do Not Use. Spares connected to PXI bridge FPGA.

IRQ Output. Interrupt output pin going to PXI bridge FPGA

IRQ = 1 means interrupt will be generated to PC host.

IRQ = 0 means no interrupt.

FSpr[0..3] Bidir. Spare Signals connected to Expansion Board

MClr Input. FPGA Master Clear, Active High

TP[0..5] Bidir. Connected to test header J7 on the GX3700 PCB

ACTIVE_LED_N Output. Active LED. Connect to LD1 LED on board. ‘0’ = LED on, ‘1’ = LED off.

Table 6-1: Pin Assignments Table

GXFPGA Verilog Tutorial 85

Verilog project

In order to configure the project as Verilog and configure the pin assignment the TCL configuration script should be

added to the project. To add the script to the project, click on Project | Add/Remove Files in Project… In the

dialog box, click on the … button and browse for GX3700Verilog.tcl file in the “C:\Program Files\Marvin Test

Solutions\GxFpga\” folder. On some systems, it is recommended to move the desired TCL file to your project’s

source location prior to adding it to the project. Click Open and then the Add button.

Figure 6-2: Add Tcl Script to Project

Then click on Tools | TCL Scripts … Select the configuration script file, GX3700Verilog.tcl and click on Run.

This will configure your FPGA pin assignments.

Note: The TCL file will automatically add all the source files needed for the tutorial design to the Quartus II project.

You can view the pin assignments by running the Pin Planner application which is found in the Tasks list as

highlighted below:

86 GX3700 User’s Guide

Figure 6-3: Task Flow

The Pin Planner will display a matrix of the physical FPGA pins and their mapped names as well as the I/O standard

supported by the pin. These mapped names are used in the FPGA design, as wire names and I/O pins, to connect to

the physical connections of the FPGA.

GXFPGA Verilog Tutorial 87

Creating Design File with Verilog

At this point you will have successfully created an FPGA design based on the source codes provided. This section

will walk you through the steps of creating modeled components in several modules.

Note: There is more than one way to accomplish the following designs.

Phase 1: Creating the FPGA design - 32 bit Full Adder

This design will take two double word (32 bit) values, located in the first two double words in the Register space

(byte offset 0x0 and 0x4), and add them together. The sum of the two values will be immediately output to the third

double word in the Register space (byte offset 0x8). The sources for all referenced components are installed with

the GXFPGA software package to C:\Program Files\Marvin Test Solutions\GxFpga\Examples\Quartus\Gx3700\

Tutorial_Verilog\source

Components Used

 adder.v – An n-bit full adder

 and_gate.v - A two input and gate, the first input in n-bit width

 d_flipflop.v – A n-bit D flip-flop

 decoder.v – An n-bit decoder

 or_gate2.v - A two input or gate, the first input in n-bit width

 or_gate4.v - A four input or gate

88 GX3700 User’s Guide

Top-level Verilog file

In order to open the Verilog text editor, click on File menu, and then New the following dialog appears.

Select Verilog HDL File:

Figure 6-4: New File Dialog Box

GXFPGA Verilog Tutorial 89

Top-level inputs and outputs

The top-level object for this project will be named tutorial_design_top.v. Start by creating module prototype with

the proper inputs and outputs. The inputs and outputs all correspond to pin on the FPGA.

//--

// Design Name : GXFPGA Verilog Tutorial

// Function : Demonstrates functionality described in the

// Verilog Tutorial chapter of the GXFPGA User's Guide.

//--

module tutorial_design_top(Addr, WrEn, CS, PCIClock, PXI10Mhz, RdEn, FlexIO, LREAD_DV, FDt);

input [6:2] Addr;

input WrEn;

input [2:1] CS;

input PCIClock;

input PXI10Mhz;

input RdEn;

output [65:33] FlexIO;

output LREAD_DV; // Read Data Valid flag

inout [31:0] FDt;

endmodule

Figure 6-5: GXFPGA Verilog Tutorial Prototype

The first step is creating the circuitry required to decode the PCI Address when data is to be written from the PC to

the FPGA. This circuit will be used in all three functions of this example project. The signals required for PCI Write

access will be the PCI Clock, Write Enable, Chip Select 1, and some PCI Address lines. The PCI Address lines 5

to 2 will be fed to a decoder which will generate a 32-bit value, and the result will be ANDed with the Chip Select 1

bit. Each Chip Select bit represents a certain PCI BAR access (GX3700 has two bars, memory and register

memories). Bit 1 represents BAR1 of the PCI memory space (bit 2 for BAR2). BAR1 is the general-purpose Control

Register BAR for the GX3700. The results of the AND operation will be once again ANDed to the Write Enable

PCI signal.

90 GX3700 User’s Guide

To create the address decoder, we’ll need to model the D Flip-flop (to latch the inputs), the And gate, and the

decoder. For each module that we add, you should use the New File Dialog to add a Verilog HDL file to create the

blank file. When saving, give the file the same name as the module. The source for the referenced modules follows:

//---

// Design Name : and_gate

// Function : A two input and gate, the first input in n-bit width

//---

module and_gate (out, in1, in2);

parameter width=1;

output [width-1:0] out;

input [width-1:0] in1;

input in2;

assign out = in2 ? in1 : 0;

endmodule

Figure 6-6: and_gate.v source

 When saving, give the file the same name as the entity. The source for the referenced entity follows:

//---

// Design Name : d_flipflop

// Function : A n-bit D flip-flop

//---

module d_flipflop (d, clk, ena, clrn, q);

parameter width = 1;

output [width-1:0] q;

input clk, ena, clrn;

input [width-1:0] d;

reg [width-1:0] q;

always @ (posedge clk or negedge clrn)

begin

 if (~clrn)

 q <= 'b0;

 else if (ena)

 q <= d;

end

endmodule

Figure 6-7: d_flipflop.v source

GXFPGA Verilog Tutorial 91

When saving, give the file the same name as the module. The source for the referenced modules follows:

//---

// Design Name : decoder

// Function : An n-bit decoder

//---

module decoder (decoder_in, enable, decoder_out);

parameter input_bit = 2;

output [2 ** input_bit-1:0] decoder_out ;

input [input_bit-1:0] decoder_in;

input enable;

assign decoder_out = enable ? (1 << decoder_in) : 'b0 ;

endmodule

Figure 6-8: decoder.v source

In tutorial_design_top.v, we will now write the code to describe our PCI Address Decoder Circuit. Latch both the

Address and Write Enable lines using the PCI Clock. Decode the 5 bit Address lines into a 32-bit bus named

DecodedAddr. This decoded bus is ANDed with the FPGA’s CS[1] to define our PCI Address Decoded Select

lines.

Additionally, we will define our Write Enable (WE) lines in this code block. We will use this later, along with Read

Enable, to read and write to registers.

// PCI Address Decoder Circuit

wire [4:0] LatchedAddr;

wire LatchedWrEn, LatchedRdEn;

wire [31:0] DecodedAddr, WE, Sel;

d_flipflop inst23(WrEn, PCIClock, nc_ena, nc_rst, LatchedWrEn);

d_flipflop #(5) inst24(Addr, PCIClock, nc_ena, nc_rst, LatchedAddr);

decoder #(5) inst(LatchedAddr, nc_ena, DecodedAddr);

and_gate #(32) inst2(Sel, DecodedAddr, CS[1]);

and_gate #(32) inst3(WE, Sel, LatchedWrEn);

Figure 6-9: PCI Address Decoder Circuit

92 GX3700 User’s Guide

You will notice that we used a few undefined symbols in this last section: nc_ena and nc_rst. These are

placeholders for enable and reset lines that our various components can take advantage of. For this tutorial, I have

chosen not to use enable or reset lines at all so we should add the following code to tutorial_design_top.v to explicit

set these wires to always enabled, never reset.

wire nc_rst, nc_ena;

assign nc_rst = 1'b1; // No reset

assign nc_ena = 1'b1; // Always enabled

Now that the PCI address decoder circuit is complete, we can feed the appropriate bits from the WE bus to D Flip

Flops that will store data clocked in from the PCI data lines. For example, the first double word in PCI memory

(representing the first number to be summed) will be written to a D Flip Flop with its enable line tied to WE[0] (the

first bit in the WE bus). The second double word to be added will be written to another D Flip Flop with its enable

line tied to WE[1]. Finally, the PCI Clock signal (33Mhz) will be used as the clock source of the D Flip Flops. Note

that each bit of the Sel and WE buses represent a consecutive double word address (bit 0 corresponds with byte 0,

bit 1 corresponds with byte 4, bit 2 corresponds with byte 8 etc.).

First we start by creating an extend circuit to deal with any timing issues with the WE signal. Then we will create

some Flip Flops to latch inputs to the adders. We will use a placeholder named LatchedFDt as the input to the D

Flip Flops. Eventually the PCI data lines will drive these inputs. Wire the outputs of the D Flip Flops to the Adder

component. The output of the adder, Sum, will be used as an output later.

//---

// Design Name : or_gate4

// Function : A four input or gate

//---

module or_gate4 (out, in1, in2, in3, in4);

parameter width=1;

output [width-1:0] out;

input [width-1:0] in1, in2, in3, in4;

assign out=in1|in2|in3|in4;

endmodule

Figure 6-10: or_gate4.v source

//---

// Design Name : or_gate2

// Function : A two input or gate, the first input in n-bit width

//---

module or_gate2 (out, in1, in2);

parameter width=1;

output [width-1:0] out;

input [width-1:0] in1, in2;

assign out=in1|in2;

endmodule

Figure 6-11: or_gate2.v source

GXFPGA Verilog Tutorial 93

//---

// Design Name : adder

// Function : An n-bit full adder

//---

module adder (dataa, datab, result);

parameter width = 1;

output [width-1:0] result;

input [width-1:0] dataa, datab;

assign result = dataa+datab;

endmodule

Figure 6-12: adder.v source

// WE[31..0] extend circuit - Extend write enable to mitigate timing issues

wire [31:0] LatchedWE, LatchedWE2, LatchedWE3, WE_EXT;

d_flipflop #(32) inst26(WE, PCIClock, nc_ena, nc_rst, LatchedWE);

d_flipflop #(32) inst27(LatchedWE, PCIClock, nc_ena, nc_rst, LatchedWE2);

d_flipflop #(32) inst28(LatchedWE2, PCIClock, nc_ena, nc_rst, LatchedWE3);

or_gate4 #(32) inst30(WE_EXT, WE, LatchedWE, LatchedWE2, LatchedWE3);

// Adder circuit - Latch the addends and include adder

wire [31:0] Sum, Addend1, Addend2;

d_flipflop #(32) inst4(LatchedFDt, PCIClock, WE_EXT[0], nc_rst, Addend1);

d_flipflop #(32) inst5(LatchedFDt, PCIClock, WE_EXT[1], nc_rst, Addend2);

adder #(32) inst7(Addend1, Addend2, Sum);

Figure 6-13: WE Extend Circuit and Adder Circuit

Before moving on we must first extend the RdEn signal. Add the following to the tutorial_design_top.v:

// RdEn to 2 PCI Circuit

wire RdEn_Extend;

wire [31:0] RE;

or_gate2 inst1(RdEn_Extend, RdEn, LatchedRdEn);

d_flipflop inst8(RdEn, PCIClock, nc_ena, nc_rst, LatchedRdEn);

and_gate #(32) inst12(RE, Sel, RdEn_Extend);

d_flipflop inst21(LatchedRdEn, PCIClock, nc_ena, nc_rst, LREAD_DV);

// RE[31..0] extend circuit - Extend read enable to mitigate timing issues

wire [31:0] LatchedRE, LatchedRE2, LatchedRE3, RE_EXT;

d_flipflop #(32) inst18(RE, PCIClock, nc_ena, nc_rst, LatchedRE);

d_flipflop #(32) inst19(LatchedRE, PCIClock, nc_ena, nc_rst, LatchedRE2);

d_flipflop #(32) inst20(LatchedRE2, PCIClock, nc_ena, nc_rst, LatchedRE3);

or_gate4 #(32) inst22(RE_EXT, RE, LatchedRE, LatchedRE2, LatchedRE3);

Figure 6-14: RdEn to 2 PCI Circuit and RE Extend Circuit

94 GX3700 User’s Guide

We also create a Read Data Valid output pin, LREAD_DV. This comes from a D-Flipflop with the PCIClock as an

input clock and the RdEn as the input data. The D-Flip Flop also creates our extender for our ReadEnable.

The inputs to the D Flips Flops can now be wired to the PCI data lines (FDt). We need to clean up the FDt signal as

is comes back into our circuit by adding the D-FlipFlop.

// Tri-stated FDt pins

wire [31:0] FDt, LatchedFDt;

reg [31:0] FDt_out_value;

reg [31:0] FDt_in_value;

assign FDt = RE_EXT ? FDt_out_value : 32'bz;

d_flipflop #(32) inst25(FDt_in_value, PCIClock, nc_ena, nc_rst, LatchedFDt);

always @(posedge PCIClock) begin

 if (RE_EXT[2]==1'b1)

 FDt_out_value <= Sum;

 else if (RE_EXT[0]==1'b1)

 FDt_out_value <= Addend1;

 else if (RE_EXT[1]==1'b1)

 FDt_out_value <= Addend2;

 else if (RE_EXT[31]==1'b1)

 FDt_out_value <= result;

 FDt_in_value <= FDt; //store the input value

end

Figure 6-15: FDt in/out signal assignment

Now that the design has been completed, a revision number should be added so that the end user can read it back

from the PCI bus at the 32nd register double word location (byte address 0x7C).

Including a revision number constant to the design is a Marvin Test Solutions standard practice that we recommend

end users to follow. The revision constant is 32 bits long and is read as a hexadecimal number such as 0x3564A000.

The first two digits of the hexadecimal number represent the company, in this case 35 is for Marvin Test Solutions

designs. The next two digits are the design specific code, 64 in this case. And the last 4 digits, A000, is the revision

of the design.

Add the following to tutorial_design_top.v:

// Add revision constant

reg [31:0] result = 32'h3564A000;

Figure 6-16: Symbol Properties

GXFPGA Verilog Tutorial 95

Phase 2: Creating the FPGA Design - 2 to 1 Clock Mux

This design will output either the PCI Clock (33Mhz) or the 10Mhz clock to FlexIO Channel 65 (Check connectors

tables for the correct pin location) depending on what was written to the 4th double word in the PCI register space

(byte offset 0xC). A 1 will select the 10Mhz clock signal, and a 0 will select the PCI clock signal.

Design

You will now build upon the tutorial project to add the functionality of a 2 to 1 Clock Mux. The 10Mhz clock will

be brought into the design by an input pin. The PCI Clock signal input pin is already present in the Phase 1 circuit,

so this will be reused. FlexIO[65] (IO Channel 65) will be used to output the selected clock to the outside world.

// Clock Mux Circuit

wire LatchedFDt0, PCIClock;

d_flipflop inst6(FDt[0], PCIClock, WE_EXT[3], nc_rst, LatchedFDt0);

assign FlexIO[65] = LatchedFDt0 ? PXI10Mhz : PCIClock;

Figure 6-17: Clock Mux Circuit

FDt[0] is the first bit of the PCI data bus. This bit can either be 0 or 1, to indicate which clock source to choose.

WE_EXT[3] is the 4th bit from the decoded PCI Address. When this bit is high, it indicates that the PCI Bus is

addressing the 4th double word (byte offset 0xC) of the Register space for the GX3700. In our case, the value of this

double word is used to select which clock is selected by our Mux.

At this point the design is complete, continue with the next sections to generate SVF or RPD files and load your

design to the GX3700.

96 GX3700 User’s Guide

Configure Project to Output SVF and RPD Files

To ensure that a SVF file is generated upon project compilation, go to the Assignments, Device ... and click on the

Device and Pin Options button. Then click on the Programming Files and verify that the Serial Vector Format

File checkbox has been selected.

Figure 6-18: Select SVF as output file

Now click on the Configuration choose Active Serial Configuration Scheme, check Use Configuration Device

checkbox and select EPCS64 as the configuration device from the drop down selection. Finally click on OK twice

to exit the settings dialog boxes.

GXFPGA Verilog Tutorial 97

Figure 6-19: Select Configuration Device

98 GX3700 User’s Guide

Compile an Example Project and Build RPD and SVF Files

Click on Processing menu tab and choose Start Compilation to start the compilation process for the example

project. After the process, has ran successfully, you should now see in Quartus II something similar to the figure

below. The green check marks indicate success and the red X indicates failure. The process will succeed only when

there is no error. There may or may not be any warning. If there is any warning, make sure that it is OK for the

design before moving forward. For this tutorial design, ignore all warnings.

Figure 6-20: Compilation Tools and Status

The SVF file will be generated after the project compilation has finished. The Compilation Task window will show

green check marks next to each major task to indicate completion.

GXFPGA Verilog Tutorial 99

In order to generate RPD file go to File, Convert Programming Files …

Select Raw Programming Data File (.rpd) as the Programming file type and tutorial_design_top.rpd as the File

Name. Click on the Add File button and select tutorial_design_top.pof. The .pof file should now appear below the

POF Data node as shown below. Finally, click the Generate button to create the RPD file.

Figure 6-21: Convert Programming Files Dialog Box

100 GX3700 User’s Guide

Load Gx3700 with SVF File

Start the GX3700 Panel (from the Windows Start menu, Marvin Test Solutions, GxFpga) and initialize the

instrument. Next, click on the Volatile radio box and then click on the Browse Button (…) to select the newly

generated SVF file (tutorial_design_top.svf). Finally click on the Load button to begin programming the card. You

will see the progress bar indicate the status of the load. Once the load has completed, the status bar should be

unfilled.

Figure 6-22: Software Front Panel

GXFPGA Verilog Tutorial 101

Testing the Design

Now that the design has been completed, compiled and loaded into the GX3700, we can move on to the testing.

There are two ways to access the FPGA, either through the software front panel or through the driver API DLL. We

will demonstrate the programming method using ATEasy to access the driver API DLL.

Adder Testing

The software front panel will be used to test Phase 1 of the design which adds two 32 bit numbers together. Click on

the I/O Tab to get started. The Adder phase is controlled through the FPGA Register space. Offset 0x0 points to the

first 32 bit number that will be summed and offset 0x4 points to the second 32 bit number that will be summed.

Write values to both these locations. The sum can be obtained by reading the 32-bit value at offset 0x8. Verify that

the correct sum is read back.

Figure 6-23: Using the Software Front Panel to read back the Sum

102 GX3700 User’s Guide

Clock Mux Testing

The software front panel will once again be used to test Phase 2 of the design. This part of the design uses a Mux to

select between the PCI Clock and the 10 Mhz reference clock. The selected clock is output to I/O Channel 65. The

Mux is controlled through the FPGA Register space.

Writing a 0x0 to offset 0xC will route the PCI/PCIe Clock signal to I/O Channel 65. Writing 0x1 to the same offset

will route the 10 Mhz clock to this same channel. Try switching between both values while monitoring pin with an

oscilloscope. You should see the appropriate clock signals.

GXFPGA VHDL Tutorial 103

Chapter 7 - GXFPGA VHDL Tutorial

Introduction

This tutorial will go over the basic workflow to start designing and loading a FPGA configuration for the Gx3700.

The example provides creation of a project using VHDL sources and coding. The “Tutorial design top reg.doc”

contains the design register map.

The tutorial contents will entail:

 Downloading and installing the FPGA design tool

 Creating a new FPGA Design project with the Stratix III as the target device

 Setup the pin assignment to work with the GX3700 and Stratix III FPGA

 Use the Quartus IDE to create an example FPGA configuration

 Compile the project and generate the SVF and RPD programming files

 Loading the board with the generated programming files

 Testing the design using the Gx3700 Front Panel software and ATEasy

 The example configuration is broken down into three phases, each with a distinct function:

 Phase 1: Take two values located in PCI Registers and generate a Sum (Adder) which can then be read

through a third PCI Register.

 Phase 2: 2 to 1 multiplexer to choose between the 10 MHz Clock and the PCI Clock which will be

output on one of the FlexIO pins. The clock will be selected through a PCI Register.

 The source code for the examples in this chapter is provided in the Examples\Quartus\Gx3700 folder.

Downloading Altera Design FPGA Design Tools

The Marvin Test Solutions Gx3700 User programmable FPGA board can be designed using the free Altera Quartus

II Web Edition or Subscription Edition design tool. This FPGA design tool allows end users to generate fully

featured FPGA designs that can be downloaded to the Gx3700 board using the Marvin Test Solutions GXFPGA

software API or software front panel. Other 3rd party tools can also be used to design the FPGA. Before proceeding

with this tutorial, you must have Altera Quartus II v11.0 SP1 installed on your PC. More information about this tool

and how to download it can be found at http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-

index.html.

http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html

104 GX3700 User’s Guide

Create New Project

Figure 7-1: Quartus II Start Dialog

After installing Quartus II Web Edition, start the application and select Create a new Project to start the New

Project Wizard or select File, New, New Quartus Project.

Click on Next and then select the Project Folder and enter tutorial_design_top as the project name.

Click on Next twice (skip the adding files window).

Device Selection

The next window will allow you to select the FPGA target device. Select Stratix III as the Family and

EP3SL50F780C3 when using the GX3700 or EP3SL70F780C3 for the GX3700e. For newer GXFPGA boards, the

device ID will be displayed in the instrument front panel About page.

Click on Next twice (skip the Specify Tools window).

A window summarizing all the choices made for the creation of this project is shown. Click on Finish.

GXFPGA VHDL Tutorial 105

Pin Assignment Setup

You should now have an empty skeleton project loaded in Quartus II. Before you can get started on the FPGA

design, you must assign the FPGA pins distinct names so that you can reference them in your design. This can be

accomplished by running a TCL script which contains all the information necessary to configure the pin

assignments as well as settings the project to either schematic entry or Verilog entry. These pin assignments are

unique to this Stratix III FPGA and the GX3700 in particular. The following table lists all the pin assignments and

their respective descriptions. The Pin Alias’s listed in the table are the pin names you will be using in your design to

reference the actual hardware pins on the FPGA.

Pin Assignments Table

Pin Alias (Node Name) Description

Clocks

10Mhz Input. 10 MHz Reference Clock Signal from the PXI Backplane

PCIClock Input. 33 MHz PCI Bus clock or 125MHz PCI Express application clock.

RefClk Input. 80 Mhz Reference Clock onboard the GX3700

PCI Bus

Addr[2..19] Input. The PCI Address lines from the PCI bus

FDt[0..31] Bidir. PCI Data lines from the PCI bus

CS[1..3]

Input. Chip Select lines from the PCI bus.

CS[1] is for FPGA registers, CS[2] is for internal SRAM, CS[3] is currently not used.

LEXT Input. External SRAM chip select. This is chip select for external SRAM on PCB.

RdEn Input. PCI Read Enable line from the PCI bus

WrEn Input. PCI Write Enable line from the PCI bus

LREAD_DV Output. Read data valid. This is data valid for FDt(31:0) data bus.

LUW Input. Currently not used. Upper Word.

LLW Input. Currently not used. Lower Word.

LRESET Input. Currently not used. Reset coming from PXI bridge FPGA.

PXI Bus

PxiTrig[0..7] Bidir. PXI Bus trigger signals

StarTrig

Output. PXI Star Trigger signal. This signal can be re-defined by the user as bi-

directional.

PXI_LBL6 Bidir. PXI Local Bus Left 6. This is local bus according to PXIe spec.

PXI_LBR6 Bidir. PXI Local Bus Right 6. This is local bus according to PXIe spec.

PXIe_DSTARA Input. PXIe DSTAR trigger A. This is DSTAR trigger according to PXIe spec.

PXIe_DSTARB Input. PXIe DSTAR trigger B. This is DSTAR trigger according to PXIe spec.

PXIe_DSTARC Output. PXIe DSTAR trigger C. This is DSTAR trigger according to PXIe spec.

PXIE_100M Input. PXIe 100MHz clock. This is 100MHz clock according to PXIe spec.

PXIE_SYNC100 Input. PXIe Sync100. This is Sync100 signal according to PXIe spec.

I/O

FlexIO[1..160] Bidir. The physical IO Channels including 4 global clock inputs (2 differential pairs).

106 GX3700 User’s Guide

External Flash

Fsm_a[1..23] Output. Address bus shared by external SRAM and flash.

Fsd[0..31] Bidir. Data bus shared by external SRAM and flash.

Flash_ce_n Output. Flash chip enable.

Flash_oe_n Output. Flash output enable.

Flash_we_n Output. Flash write enable.

Flash_reset_n Output. Flash chip reset

Flash_byte_n Output. Flash byte/word select.

Flash_busy_n Input. Flash busy

External SRAM

Sram_be_n[0..3] Output. External SRAM byte enable.

Sram_ce_n Output. External SRAM chip select.

Sram_oe_n Output. External SRAM output enable.

Sram_we_n Output. External SRAM write enable.

RX DMA FIFO I/F

RX_DMA_DAT[0..31] Input. Receive DMA data coming from PC host.

RX_DMA_DV Input. Receive DMA data valid.

RX_DMA_FIFOFULL Output. Receive DMA FIFO full. This will throttle data from PC host.

RX_DMA_SP1 Output. Spare. Currently not used.

RX_DMA_SP2 Output. Spare. Currently not used.

TX DMA FIFO I/F

TX_DMA_DAT[0..31] Output. Transmit DMA data from memory going to PC host.

TX_DMA_DV Output. Transmit DMA data valid.

TX_DMA_FIFOEMPTY

Output. Transmit DMA FIFO empty. When empty and is sending data to PC host, the

DMA engine in PXI bridge FPGA will assert FIFO read enable TX_DMA_FIFO_RD.

TX_DMA_FIFO_RD Input. Transmit DMA FIFO read enable.

Misc

Spare[0..7] Bidir. Do Not Use. Spares connected to PXI bridge FPGA.

IRQ Output. Interrupt output pin going to PXI bridge FPGA

IRQ = 1 means interrupt will be generated to PC host.

IRQ = 0 means no interrupt.

FSpr[0..3] Bidir. Spare Signals connected to Expansion Board

MClr Input. FPGA Master Clear, Active High

TP[0..5] Bidir. Connected to test header J7 on the GX3700 PCB

ACTIVE_LED_N Output. Active LED. Connect to LD1 LED on board. ‘0’ = LED on, ‘1’ = LED off.

Table 7-1: Pin Assignments Table

GXFPGA VHDL Tutorial 107

Schematic entry project

In order to configure the project as schematic entry and configure the pin assignment the TCL configuration script

should be added to the project. To add the script to the project, click on Project | Add/Remove Files in Project…

In the dialog box, click on the … button and browse for GX3700VHDL.tcl file in the “C:\Program Files\Marvin

Test Solutions\GxFpga\” folder. On some systems, you may need to Click Open and then the Add button.

Figure 7-2: Add Tcl Script to Project

Then click on Tools | TCL Scripts … Select the configuration script file, GX3700VHDL.tcl and click on Run. This

will configure your FPGA pin assignments.

Note: The TCL file will automatically add all the source files needed for the tutorial design to the Quartus II project.

You can view the pin assignments by running the Pin Planner application which is found in the Tasks list as

highlighted below:

108 GX3700 User’s Guide

Figure 7-3: Task Flow

The Pin Planner will display a matrix of the physical FPGA pins and their mapped names as well as the I/O standard

supported by the pin. These mapped names are used in the FPGA design, as wire names and I/O pins, to connect to

the physical connections of the FPGA.

GXFPGA VHDL Tutorial 109

Creating Design File with VHDL

This section will walk you through the steps of creating modeled components in several modules.

Note: There is more than one way to accomplish the following designs.

Phase 1: Creating the FPGA design - 32 bit Full Adder

This design will take two double word (32 bit) values, located in the first two double words in the Register space

(byte offset 0x0 and 0x4), and add them together. The sum of the two values will be immediately output to the third

double word in the Register space (byte offset 0x8). The sources for all referenced components are installed with

the GXFPGA software package to C:\Program Files\Marvin Test Solutions\GxFpga\Examples\Quartus\Gx3700\

Tutorial_VHDL\source

Components Used

 d_flipflop_1.vhd – A 1-bit D flip-flop

 d_flipflop_n.vhd - A n-bit D flip-flop

 decoder.vhd – A 5 to 32 decoder (structural)

 or_gate2.vhd – A two input or gate

 or_gate4.vhd - A four input or gate

 adder.vhd – An n-bit full adder

 and_gate_1.vhd – A two input 1-bit and gate

 and_gate_n.vhd – A two input variable-width and gate

110 GX3700 User’s Guide

Top-level VHDL file

In order to open the VHDL text editor, click on File menu, and then New the following dialog appears.

Select VHDL File:

Figure 7-4: New File Dialog Box

GXFPGA VHDL Tutorial 111

Top-level inputs and outputs

The top-level object for this project will be named tutorial_design_top.vhd. Start by creating module prototype

with the proper inputs and outputs. The inputs and outputs all correspond to pin on the FPGA.

--

-- Design Name : GXFPGA VHDL Tutorial

-- Function : Demonstrates functionality described in the

-- VHDL Tutorial chapter of the GXFPGA User's Guide.

--

LIBRARY ieee ;

USE ieee.std_logic_1164.all ;

ENTITY tutorial_design_top IS

 PORT (Addr : IN STD_LOGIC_VECTOR(6 downto 2);

 CS : IN STD_LOGIC_VECTOR(2 downto 1);

 WrEn, RdEn : IN STD_LOGIC;

 PCIClock, PXI10Mhz : IN STD_LOGIC;

 FlexIO : OUT STD_LOGIC_VECTOR(65 downto 33);

 LREAD_DV : OUT STD_LOGIC;

 FDt : INOUT STD_LOGIC_VECTOR(31 downto 0));

END tutorial_design_top;

Figure 7-5: GXFPGA VHDL Tutorial Prototype

The first step is creating the circuitry required to decode the PCI Address when data is to be written from the PC to

the FPGA. This circuit will be used in all three functions of this example project. The signals required for PCI Write

access will be the PCI Clock, Write Enable, Chip Select 1, and some PCI Address lines. The PCI Address lines 5

to 2 will be fed to a decoder which will generate a 32-bit value, and the result will be ANDed with the Chip Select 1

bit. Each Chip Select bit represents a certain PCI BAR access (GX3700 has two bars, memory and register

memories). Bit 1 represents BAR1 of the PCI memory space (bit 2 for BAR2). BAR1 is the general-purpose Control

Register BAR for the GX3700. The results of the AND operation will be once again ANDed to the Write Enable

PCI signal.

112 GX3700 User’s Guide

 To create the address decoder, we’ll need to model the D Flip-flop (to latch the inputs), the AND gate, and the

decoder. For each module that we add, you should use the New File Dialog to add a Verilog HDL file to create the

blank file. When saving, give the file the same name as the module. The source for the referenced modules follows:

-- Design Name : and_gate_n

-- Function : A two input and gate, the first input in n-bit width

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY and_gate_n IS

GENERIC (n_width : NATURAL := 32);

 PORT (Input1 : IN STD_LOGIC_VECTOR (n_width-1 downto 0);

 Input2 : IN STD_LOGIC;

 Output : OUT STD_LOGIC_VECTOR (n_width-1 downto 0));

END and_gate_n;

ARCHITECTURE Behavior OF and_gate_n IS

BEGIN

 PROCESS (Input1, Input2) BEGIN

 IF Input2 = '1' THEN

 Output <= Input1;

 ELSE

 FOR i IN 0 TO n_width-1 LOOP

 Output(i) <= '0';

 END LOOP;

 END IF;

 END PROCESS;

END Behavior;

Figure 7-6: and_gate_n.vhd source

GXFPGA VHDL Tutorial 113

-- Design Name : d_flipflop_1

-- Function : A 1-bit D flip-flop

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY d_flipflop_1 IS

 PORT (D : IN STD_LOGIC;

 Clock : IN STD_LOGIC;

 Enable : IN STD_LOGIC;

 Clearn : IN STD_LOGIC;

 Q : OUT STD_LOGIC);

END d_flipflop_1;

ARCHITECTURE Behavior OF d_flipflop_1 IS

BEGIN

 PROCESS(Clock)

 BEGIN

IF (rising_edge(Clock)) THEN

 IF (Clearn = '1') THEN

 Q <= '0';

 ELSE

 IF (Enable = '1') THEN

 Q <= D;

 END IF;

 END IF;

 END IF;

 END PROCESS;

END Behavior;

Figure 7-7: d_flipflop_1.vhd source

114 GX3700 User’s Guide

-- Design Name : d_flipflop_n

-- Function : A n-bit D flip-flop

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY d_flipflop_n IS

 GENERIC (n_width : INTEGER RANGE 2 TO 32 := 32);

 PORT (D : IN STD_LOGIC_VECTOR (n_width-1 downto 0);

 Clock : IN STD_LOGIC;

 Enable : IN STD_LOGIC;

 Clearn : IN STD_LOGIC;

 Q : OUT STD_LOGIC_VECTOR (n_width-1 downto 0));

END d_flipflop_n;

ARCHITECTURE Behavior OF d_flipflop_n IS

BEGIN

 PROCESS(Clock)

 BEGIN

 if (rising_edge(Clock)) then

 if (Clearn = '1') then

 A: FOR i IN 0 TO n_width-1 loop

 Q(i) <= '0';

 END LOOP;

 ELSE

 IF (Enable = '1') THEN

 Q <= D;

 END IF;

 END IF;

 END IF;

 END PROCESS;

END Behavior;

Figure 7-8: d_flipflop_n.vhd source

GXFPGA VHDL Tutorial 115

-- Design Name : decoder

-- Function : An 5 to 32 decoder (non-behavioral)

LIBRARY ieee;

USE ieee.std_logic_1164.all;

USE ieee.numeric_std.all;

entity decoder is

 port(Decoder_In : IN STD_LOGIC_VECTOR(4 downto 0);

 Decoder_Out : OUT STD_LOGIC_VECTOR(31 downto 0));

end decoder;

ARCHITECTURE Behavior OF decoder IS

BEGIN

Decoder_Out <="00000000000000000000000000000001" when Decoder_In="00000" else

 "00000000000000000000000000000010" when Decoder_In="00001" else

 "00000000000000000000000000000100" when Decoder_In="00010" else

 "00000000000000000000000000001000" when Decoder_In="00011" else

 "00000000000000000000000000010000" when Decoder_In="00100" else

This entity was abbreviated due to its repetitive nature.

 "00001000000000000000000000000000" when Decoder_In="11011" else

 "00010000000000000000000000000000" when Decoder_In="11100" else

 "00100000000000000000000000000000" when Decoder_In="11101" else

 "01000000000000000000000000000000" when Decoder_In="11110" else

 "10000000000000000000000000000000" when Decoder_In="11111";

END Behavior;

Figure 7-9: decoder.vhd source

116 GX3700 User’s Guide

-- Design Name : and_gate_1

-- Function : A two input and gate

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY and_gate_1 IS

 PORT (Input1 : IN STD_LOGIC;

 Input2 : IN STD_LOGIC;

 Output : OUT STD_LOGIC);

END and_gate_1;

ARCHITECTURE Behavior OF and_gate_1 IS

BEGIN

 PROCESS (Input1, Input2)

 BEGIN

 IF Input2 = '1' THEN

 Output <= Input1;

 ELSE

 Output <= '0';

 END IF;

 END PROCESS;

END Behavior;

Figure 7-10: and_gate_1.vhd source

GXFPGA VHDL Tutorial 117

-- Design Name : adder

-- Function : An n-bit full adder

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY adder IS

 GENERIC(n_width : NATURAL := 32);

 PORT (DataA, DataB : IN STD_LOGIC_VECTOR(n_width-1 downto 0);

 Cin : IN STD_LOGIC;

 Result : OUT STD_LOGIC_VECTOR(n_width-1 downto 0);

 Cout : OUT STD_LOGIC);

END adder;

ARCHITECTURE Behavior OF adder IS

BEGIN

 adder: PROCESS (DataA, DataB, Cin)

 variable carry : STD_LOGIC;

 variable isum : STD_LOGIC_VECTOR(n_width-1 downto 0);

 BEGIN

 carry := Cin;

 for i in 0 to n_width-1 loop

 isum(i) := DataA(i) xor DataB(i) xor carry;

carry := (DataA(i) and DataB(i)) or (DataA(i) and carry) or (DataB(i) and carry);

 end loop;

 Result <= isum;

 Cout <= carry;

END PROCESS adder;

END Behavior;

Figure 7-11: adder.vhd source

-- Design Name : or_gate2

-- Function : A two input or gate

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY or_gate2 IS

 PORT (Input1 : IN STD_LOGIC;

 Input2 : IN STD_LOGIC;

 Output : OUT STD_LOGIC);

END or_gate2;

ARCHITECTURE Behavior OF or_gate2 IS

BEGIN

 Output <= Input1 or Input2;

END Behavior;

Figure 7-12: or_gate2.vhd source

118 GX3700 User’s Guide

-- Design Name : or_gate4

-- Function : A four input or gate

LIBRARY ieee;

USE ieee.std_logic_1164.all;

ENTITY or_gate4 IS

 GENERIC (n_width : NATURAL := 32);

 PORT (Input1 : IN STD_LOGIC_VECTOR (n_width-1 downto 0);

 Input2 : IN STD_LOGIC_VECTOR (n_width-1 downto 0);

 Input3 : IN STD_LOGIC_VECTOR (n_width-1 downto 0);

 Input4 : IN STD_LOGIC_VECTOR (n_width-1 downto 0);

 Output : OUT STD_LOGIC_VECTOR (n_width-1 downto 0));

END or_gate4;

ARCHITECTURE Behavior OF or_gate4 IS

BEGIN

 Output <= Input1 or Input2 or Input3 or Input4;

END Behavior;

Figure 7-13: or_gate4.vhd source

In tutorial_design_top.v, we will now write the code to describe our PCI Address Decoder Circuit. Latch both the

Address and Write Enable lines using the PCI Clock. Decode the 5 bit Address lines into a 32-bit bus named

DecodedAddr. This decoded bus is ANDed with the FPGA’s CS[1] to define our PCI Address Decoded Select

lines.

Additionally, we will define our Write Enable (WE) lines in this code block. We will use this later, along with Read

Enable, to read and write to registers.

-- PCI Address Decoder Circuit

inst: decoder PORT MAP (LatchedAddr, DecodedAddr);

inst2: and_gate_n GENERIC MAP (32) PORT MAP (DecodedAddr, CS(1), Sel);

inst3: and_gate_n GENERIC MAP (32) PORT MAP (Sel, LatchedWrEn, WE);

inst23: d_flipflop_1 PORT MAP (WrEn, PCIClock, NC_Ena, NC_Rst, LatchedWrEn);

inst24: d_flipflop_n GENERIC MAP (5) PORT MAP (Addr, PCIClock, NC_Ena, NC_Rst, LatchedAddr);

Figure 7-14: PCI Address Decoder Circuit

You will notice that we used a few undefined symbols in this last section: nc_ena and nc_rst. These are

placeholders for enable and reset lines that our various components can take advantage of. For this tutorial, I have

chosen not to use enable or reset lines at all so we should add the following code to tutorial_design_top.v to explicit

set these wires to always enabled, never reset.

SIGNAL NC_Cin, NC_Rst : STD_LOGIC := '0';

SIGNAL Res1, NC_Ena : STD_LOGIC := '1';

GXFPGA VHDL Tutorial 119

Now that the PCI address decoder circuit is complete, we can feed the appropriate bits from the WE bus to D Flip

Flops that will store data clocked in from the PCI data lines. For example, the first double word in PCI memory

(representing the first number to be summed) will be written to a D Flip Flop with its enable line tied to WE[0] (the

first bit in the WE bus). The second double word to be added will be written to another D Flip Flop with its enable

line tied to WE[1]. Finally, the PCI Clock signal (33Mhz) will be used as the clock source of the D Flip Flops. Note

that each bit of the Sel and WE buses represent a consecutive double word address (bit 0 corresponds with byte 0,

bit 1 corresponds with byte 4, bit 2 corresponds with byte 8 etc.)

First we start by creating an extend circuit to deal with any timing issues with the WE signal. Then we will create

some Flip Flops to latch inputs to the adders. We will use a placeholder named LatchedFDt as the input to the D

Flip Flops. Eventually the PCI data lines will drive these inputs. Wire the outputs of the D Flip Flops to the Adder

component. The output of the adder, Sum, will be used as an output later.

-- WE extend circuit - Extend write enable to mitigate timing issues

inst26: d_flipflop_n GENERIC MAP (32) PORT MAP (WE, PCIClock, NC_Ena, NC_Rst, LatchedWE);

inst27: d_flipflop_n GENERIC MAP (32) PORT MAP (LatchedWE, PCIClock, NC_Ena, NC_Rst,

LatchedWE2);

inst28: d_flipflop_n GENERIC MAP (32) PORT MAP (LatchedWE2, PCIClock, NC_Ena, NC_Rst,

LatchedWE3);

inst30: or_gate4 GENERIC MAP (32) PORT MAP (LatchedWE, LatchedWE2, LatchedWE3, WE,

WE_EXT);

-- Adder circuit - Latch the addends and include adder

inst4: d_flipflop_n GENERIC MAP (32) PORT MAP (FDt_LoopBack, PCIClock, WE_EXT(0), NC_Rst,

AdderA);

inst5: d_flipflop_n GENERIC MAP (32) PORT MAP (FDt_LoopBack, PCIClock, WE_EXT(1), NC_Rst,

AdderB);

inst7: adder GENERIC MAP (32) PORT MAP (AdderA, AdderB, NC_Cin, AdderBuff, NC_Cout);

Figure 7-15: WE Extend Circuit and Adder Circuit

Before moving on we must first extend the RdEn signal. Add the following to the tutorial_design_top.v:

-- RdEn to 2 PCI Circuit

inst1: or_gate2 PORT MAP (RdEn, LatchedRdEn, RdEn_Extend);

inst8: d_flipflop_1 PORT MAP (RdEn, PCIClock, NC_Ena, NC_Rst, LatchedRdEn);

inst12: and_gate_n GENERIC MAP (32) PORT MAP (Sel, RdEn_Extend, RE);

inst21: d_flipflop_1 PORT MAP (LatchedRdEn, PCIClock, NC_Ena, NC_Rst, LREAD_DV);

 Figure 7-16: RdEn to 2 PCI Circuit

-- RE extend circuit - Extend read enable to mitigate timing issues

inst18: d_flipflop_n GENERIC MAP (32) PORT MAP (RE, PCIClock, NC_Ena, NC_Rst, LatchedRE);

inst19: d_flipflop_n GENERIC MAP (32) PORT MAP (LatchedRE, PCIClock, NC_Ena, NC_Rst,

LatchedRE2);

inst20: d_flipflop_n GENERIC MAP (32) PORT MAP (LatchedRE2, PCIClock, NC_Ena, NC_Rst,

LatchedRE3);

inst22: or_gate4 GENERIC MAP (32) PORT MAP (LatchedRE, LatchedRE2, LatchedRE3, RE,

RE_EXT);

Figure 7-17: RE Extend Circuit

We also create a Read Data Valid output pin, LREAD_DV. This comes from a D-Flipflop with the PCIClock as an

input clock and the RdEn as the input data. The D-Flip Flop also creates our extender for our ReadEnable.

120 GX3700 User’s Guide

The inputs to the D Flips Flops can now be wired to the PCI data lines (FDt). We need to clean up the FDt signal as

is comes back into our circuit by adding the D-FlipFlop.

-- Tri-state FDt when not reading registers

FDt <= FDt_out_value when RE_EXT /= X"00000000" else (others => 'Z');

process (PCIClock, RE_EXT, AdderA, AdderB, AdderBuff, LPM_CONSTANT, FDt)

begin

 if (RE_EXT(2)='1')

 then FDt_out_value <= AdderBuff;

 elsif (RE_EXT(0)='1')

 then FDt_out_value <= AdderA;

 elsif (RE_EXT(1)='1')

 then FDt_out_value <= AdderB;

 elsif (RE_EXT(31)='1')

 then FDt_out_value <= LPM_CONSTANT;

 end if;

 FDt_in_value <= FDt; --store the input value

end process;

Figure 7-18: FDt in/out signal assignment

Now that the design has been completed, a revision number should be added so that the end user can read it back

from the PCI bus at the 32nd register double word location (byte address 0x7C).

Including a revision number constant to the design is a Marvin Test Solutions standard practice that we recommend

end users to follow. The revision constant is 32 bits long and is read as a hexadecimal number such as 0x3564A000.

The first two digits of the hexadecimal number represent the company, in this case 35 is for Marvin Test Solutions

designs. The next two digits are the design specific code, 64 in this case. And the last 4 digits, A000, is the revision

of the design.

Add the following to tutorial_design_top.vhd in the section where signals are defined:

// Add revision constant

SIGNAL LPM_CONSTANT : STD_LOGIC_VECTOR(31 downto 0) := X"3564A000";

Figure 7-19: Symbol Properties

GXFPGA VHDL Tutorial 121

Phase 2: Creating the FPGA Design - 2 to 1 Clock Mux

This design will output either the PCI Clock (33Mhz) or the 10Mhz clock to FlexIO Channel 65 (Check connectors

tables for the correct pin location) depending on what was written to the 4th double word in the PCI register space

(byte offset 0xC). A 1 will select the 10Mhz clock signal, and a 0 will select the PCI clock signal.

Design

You will now build upon the tutorial project to add the functionality of a 2 to 1 Clock Mux. The 10Mhz clock will

be brought into the design by an input pin. The PCI Clock signal input pin is already present in the Phase 1 circuit,

so this will be reused. FlexIO[65] (IO Channel 65) will be used to output the selected clock to the outside world.

 -- Clock Mux Circuit

 process (WE_EXT(3))

 begin

 if (rising_edge(WE_EXT(3)))

 then LatchedFDt0 <= FDt(0);

 end if;

 end process;

 FlexIO(65) <= PCIClock when LatchedFDt0='0' else PXI10Mhz;

Figure 7-20: Clock Mux Circuit

FDt[0] is the first bit of the PCI data bus. This bit can either be 0 or 1, to indicate which clock source to choose.

WE_EXT[3] is the 4th bit from the decoded PCI Address. When this bit is high, it indicates that the PCI Bus is

addressing the 4th double word (byte offset 0xC) of the Register space for the GX3700. In our case, the value of this

double word is used to select which clock is selected by our Mux.

At this point the design is complete, continue with the next sections to generate SVF or RPD files and load your

design to the GX3700.

122 GX3700 User’s Guide

Configure Project to Output SVF and RPD Files

To ensure that a SVF file is generated upon project compilation, go to the Assignments, Device ... and click on the

Device and Pin Options button. Then click on the Programming Files and verify that the Serial Vector Format

File checkbox has been selected.

Figure 7-21: Select SVF as output file

Now click on the Configuration choose Active Serial Configuration Scheme, check Use Configuration Device

checkbox and select EPCS64 as the configuration device from the drop down selection. Finally click on OK twice

to exit the settings dialog boxes.

GXFPGA VHDL Tutorial 123

Figure 7-22: Select Configuration Device

124 GX3700 User’s Guide

Compile an Example Project and Build RPD and SVF Files

Click on Processing menu tab and choose Start Compilation to start the compilation process for the example

project. After the process, has ran successfully, you should now see in Quartus II something similar to the figure

below. The green check marks indicate success and the red X indicates failure. The process will succeed only when

there is no error. There may or may not be any warning. If there is any warning, make sure that it is OK for the

design before moving forward. For this tutorial design, ignore all warnings.

Figure 7-23: Compilation Tools and Status

The SVF file will be generated after the project compilation has finished. The Compilation Task window will show

green check marks next to each major task to indicate completion.

GXFPGA VHDL Tutorial 125

In order to generate RPD file go to File, Convert Programming Files …

Select Raw Programming Data File (.rpd) as the Programming file type and tutorial_design_top.rpd as the File

Name. Click on the Add File button and select tutorial_design_top.pof. The .pof file should now appear below the

POF Data node as shown below. Finally, click the Generate button to create the RPD file.

Figure 7-24: Convert Programming Files Dialog Box

126 GX3700 User’s Guide

Simulating the Design

To simulate the design, we will use ModelSim application from Altera. You can download the software for free

form the Altera website. There is a test bench for this tutorial that is already created for you inside the

GXFPGA\Examples\Quartus\GX3700\Tutorial_VHDL.

Follow these steps to simulate the design:

1. Open the ModelSim application:

Figure 7-25: ModelSim Main Window

GXFPGA VHDL Tutorial 127

2. Click File Change Directory and choose the sim folder under the Tutorial folder. At this point the ModelSim

should display the simulation pins:

Figure 7-26: ModelSim Tutorial Simulation

128 GX3700 User’s Guide

3. Click Tools TclExecute Macro… and choose sim.tcl, and click Open. When ModelSim asks to close the

current project, click Yes. The screen should appear like the screen below:

Figure 7-27: Simulation of Design

GXFPGA VHDL Tutorial 129

Load Gx3700 with SVF File

Start the GX3700 Panel (from the Windows Start menu, Marvin Test Solutions, GxFpga) and initialize the

instrument. Next, click on the Volatile radio box and then click on the Browse Button (…) to select the newly

generated SVF file (tutorial_design_top.svf). Finally click on the Load button to begin programming the card. You

will see the progress bar indicate the status of the load. Once the load has completed, the status bar should be

unfilled.

Figure 7-28: Software Front Panel

130 GX3700 User’s Guide

Testing the Design

Now that the design has been completed, compiled and loaded into the GX3700, we can move on to the testing.

There are two ways to access the FPGA, either through the software front panel or through the driver API DLL. We

will demonstrate the programming method using ATEasy to access the driver API DLL.

Adder Testing

The software front panel will be used to test Phase 1 of the design which adds two 32 bit numbers together. Click on

the I/O Tab to get started. The Adder phase is controlled through the FPGA Register space.

Offset 0x0 points to the first 32 bit number that will be summed and offset 0x4 points to the second 32 bit number

that will be summed. Write values to both these locations.

The sum can be obtained by reading the 32 bit value at offset 0x8. Verify that the correct sum is read back as shown

in Figure 5-31.

Figure 7-29: Using the Software Front Panel to read back the Sum

GXFPGA VHDL Tutorial 131

Clock Mux Testing

The software front panel will once again be used to test Phase 2 of the design. This part of the design uses a Mux to

select between the PCI Clock and the 10 Mhz reference clock. The selected clock is output to I/O Channel 63 which

is located on pin 31 on the Flex I/O J2 connector of the GX3700. The Mux is controlled through the FPGA Register

space.

Writing a 0x0 to offset 0xC will route the PCI/PCIe Clock signal to I/O Channel 63. Writing 0x1 to the same offset

will route the 10 Mhz clock to this same channel. Try switching between both values while monitoring pin 31 of J2

with an oscilloscope. You should see the appropriate clock signals.

132 GX3700 User’s Guide

GX3700 Expansion Boards 133

Chapter 8 - GX3700 Expansion Boards

The GX3700 requires a piggy-back expansion board to connect to the outside world, a simple; feed through

expansion board is provided. Custom expansion boards can be developed by customers. The following information

is provided to assist the user with developing expansion boards. This information is for both, GX3700 and 3700e.

Expansion Board Design Guide

The expansion board mates with the GX3700 using one connector (P8) and two mounting holes. Two other

connectors – J1 and J2 – exist on the expansion board and are attached to the front panel when the expansion board

is mounted. Figure 6-1 depicts a bottom view of the expansion board and Figure 6-2 and Figure 6-3 detail the

complete GX3700 with the feed through expansion board assembly.

Figure 8-1: GX3701 Expansion Board – Bottom View

J1 Connector
(J1A and J1B)

J2 Connector
(J2A and J2B)

Front Panel J1 and J2 Connectors Front Panel J3 and J4 Connectors

P1 Connector

134 GX3700 User’s Guide

Figure 8-2: GX3700e Assembly with Expansion Board

P8 Connector

P1 Connector

GX3700 Expansion Boards 135

Figure 8-3: GX3700e with Expansion Board Mounted

136 GX3700 User’s Guide

Figure 8-4: GX3700 Assembly with Expansion Board

P8 Connector

P1 Connector

GX3700 Expansion Boards 137

Figure 8-5: GX3700 with Expansion Board Mounted

138 GX3700 User’s Guide

Mechanical Layout Guide

The locations of the mounting holes and connectors are critical to ensure a proper fit between the GX3700 and the

expansion board. Figure 6-6 describes the mechanical details of a typical board and the locations of connectors and

mounting holes. The figure presents a transparent view of the board from the top, with dimensions for critical

component locations. The coordinates for the connectors are pointing to the component reference point. For P1 it is

the middle between pads 1 and 2 of the footprint, as shown in Figure 6-7. For J1 and J2 it is the center of pad A1 of

the footprint, as shown in Figure 6-8.

Note: Dimensions are in mils unless noted otherwise.

Figure 8-6: Mechanical Details – Top View of Typical Board. Dimensions are in mils unless noted otherwise.

GX3700 Expansion Boards 139

Figure 8-7: Component P1 Reference Point

Figure 8-8: Components J1, J2 Reference Point

140 GX3700 User’s Guide

Figure 6-9 describes the recommended maximum dimensions for the expansion board and the recommended

maximum component height. The maximum board area is about 110 Sq centimeters or about 17 sq inches.

Figure 8-9: Mechanical Details – Top view, Maximum Board Dimensions

50mm

Maximum component height:

Top side – 1mm

Bottom side – 7mm

Maximum component height:

Top side – 1mm

Bottom side – 12mm

98mm

95mm

75mm

130mm

45mm

20mm

Maximum component height:

Top side – 1mm

Bottom side – 8mm

GX3700 Expansion Boards 141

Expansion Board Connectors and Electrical Requirements

P1 is a High Speed Terminal Strip with Rugged Ground Plan manufactured by Samtec (http://www.samtec.com/). It

has a middle bar that is used for ground and power connections. The part number for P1 is QFS-104-06.25-SL-D-A.

Figure 6-10 shows a schematic diagram of P1.

Figure 8-10: GX3700 Expansion Board – Host Connectors

J1 and J2 are used to connect the expansion board signals to the user application. Each one is a dual VHDCI 68 pins.

There are few vendors for these connectors; one option is Honda PN HDRA-E68W1LFDTC-SL+. Each connector

has two parts A and B. J1A corresponds to J2 on the front panel, J1B to J1, J2A to J4 and J2B to J3 on the front

panel. Customers can us other connectors for their application but that will require changing the design of the front

panel.

The following table lists the assignments for the expansion board signals.

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32
33 34
35 36
37 38
39 40
41 42
43 44
45 46
47 48
49 50
51 52 A

P1A QFS208

3.3V

1.2V

2.5V

FlxDif31_P
FlxDif31_N

FlxDif29_P
FlxDif29_N
FlxDif27_P
FlxDif27_N
FlxDif25_P
FlxDif25_N
FlxDif23_P
FlxDif23_N
FlxDif21_P
FlxDif21_N
FlxDif19_P
FlxDif19_N
FlxDif17_P
FlxDif17_N

FlxDif15_P
FlxDif15_N
FlxDif13_P
FlxDif13_N
FlxDif11_P
FlxDif11_N

FlxDif9_P
FlxDif9_N

FlxDif7_P
FlxDif7_N
FlxDif5_P
FlxDif5_N
FlxDif3_P
FlxDif3_N
FlxDif1_P
FlxDif1_N
FlxIO33 FlxIO34
FlxIO35 FlxIO36
FlxIO37 FlxIO38
FlxIO39 FlxIO40

FlxIO46
FlxIO48

FlxIO49
FlxIO51

FlxIO45
FlxIO47
FlxIO43 FlxIO44

FlxDif2_P
FlxDif2_N
FlxDif4_P
FlxDif4_N
FlxDif6_P
FlxDif6_N
FlxDif8_P
FlxDif8_N
FlxDif10_P
FlxDif10_N
FlxDif12_P
FlxDif12_N
FlxDif14_P
FlxDif14_N
FlxDif16_P
FlxDif16_N

FlxDif18_P
FlxDif18_N
FlxDif20_P
FlxDif20_N
FlxDif22_P
FlxDif22_N
FlxDif24_P
FlxDif24_N
FlxDif26_P
FlxDif26_N
FlxDif28_P
FlxDif28_N

FlxDif30_P
FlxDif30_N
FlxDif32_P
FlxDif32_N

FlxIO53 FlxIO54
FlxIO55 FlxIO56
FlxIO57 FlxIO58
FlxIO59 FlxIO60
FlxIO61 FlxIO62
FlxIO63 FlxIO64

FlxIO65
FlxIO66
FlxIO67
FlxIO68
FlxIO69
FlxIO70
FlxIO71
FlxIO72
FlxIO73
FlxIO74
FlxIO75
FlxIO76

FlxIO77
FlxIO78
FlxIO79
FlxIO80
FlxIO81
FlxIO82
FlxIO83
FlxIO84
FlxIO85
FlxIO86
FlxIO87
FlxIO88
FlxIO89
FlxIO90
FlxIO91
FlxIO92
FlxIO93
FlxIO94
FlxIO95
FlxIO96 FlxIO97

FlxIO98
FlxIO99
FlxIO100
FlxIO101
FlxIO102
FlxIO103
FlxIO104
FlxIO105
FlxIO106
FlxIO107
FlxIO108
FlxIO109
FlxIO110
FlxIO111
FlxIO112
FlxIO113
FlxIO114
FlxIO115
FlxIO116

FlxIO117
FlxIO118

FlxIO52
FlxIO50

+12V -12V

5V

B

53 54
55 56
57 58
59 60
61 62
63 64
65 66
67 68
69 70
71 72
73 74
75 76
77 78
79 80
81 82
83 84
85 86
87 88
89 90
91 92
93 94
95 96
97 98
99 100

101 102
103 104

P1B QFS208

C

105 106
107 108
109 110
111 112
113 114
115 116
117 118
119 120
121 122
123 124
125 126
127 128
129 130
131 132
133 134
135 136
137 138
139 140
141 142
143 144
145 146
147 148
149 150
151 152
153 154
155 156

P1C QFS208

D

157 158
159 160
161 162
163 164
165 166
167 168
169 170
171 172
173 174
175 176
177 178
179 180
181 182
183 184
185 186
187 188
189 190
191 192
193 194
195 196
197 198
199 200
201 202
203 204
205 206
207 208

P1D QFS208

FlxIO41 FlxIO42

VCC_IO

C8
0.1uF

P
P
P
P
P

P
P
P

P
P

P
P
P
P

P
P
P
P
P
P
P

P

P
P
P
P
P

P
P
P

P
P
P

P

P
P
P
P
P

P
P
P

FlxIO119
FlxIO120
FlxIO121
FlxIO122
FlxIO123
FlxIO124
FlxIO125
FlxIO126
FlxIO127
FlxIO128

PbID0
PbID1
PbID2
PbID3
MClr
PSpr0
PSpr1
PSpr2
PSpr3

FSpr0
FSpr1
FSpr2
FSpr3

C9
0.1uF

Open='1', GND='0'

Do Not Use.

Pull downs
to GND

R1
R2
R3
R4

10.0K

Piggy Back ID.

Master Clear

or pull-downs.

R5
R6
R7
R8

10.0K

Use pull-ups to 3,3V

Function ID

- Net is part of Differential Pair

142 GX3700 User’s Guide

P1 Expansion Board Connector Pin Assignment

The following table describes the GX3700 expansion board P1pin mapping to the front panel user connectors J1-J4,

and FPGA pins:

Expansion

Board

Connector

Front

Panel User

Connector

FPGA pin

Description

FPGA Pin

Name

Remark

P1-82 J1-1 Flex Diff 1P AG22

P1-84 J1-35 Flex Diff 1N AH22

P1-83 J1-2 Flex Diff 2P AG19

P1-81 J1-36 Flex Diff 2N AF19

P1-80 J1-3 Flex Diff 3P AH21

P1-78 J1-37 Flex Diff 3N AH20

P1-77 J1-4 Flex Diff 4P AD18

P1-79 J1-38 Flex Diff 4N AE19

P1-74 J1-5 Flex Diff 5P AG18

P1-76 J1-39 Flex Diff 5N AH19

P1-75 J1-6 Flex Diff 6P AE18

P1-73 J1-40 Flex Diff 6N AF17

P1-72 J1-7 Flex Diff 7P AH18

P1-70 J1-41 Flex Diff 7N AH17

P1-71 J1-8 Flex Diff 8P AE17

P1-69 J1-42 Flex Diff 8N AF16

P1-68 J1-9 Flex Diff 9P AG16

P1-66 J1-43 Flex Diff 9N AH16

P1-65 J1-10 Flex Diff 10P AD16

P1-67 J1-44 Flex Diff 10N AE16

P1-64 J1-11 Flex Diff 11P AG15 Dedicated Clock Input

P1-62 J1-45 Flex Diff 11N AH15 Dedicated Clock Input

P1-63 J1-12 Flex Diff 12P AD13

P1-61 J1-46 Flex Diff 12N AE13

P1-58 J1-13 Flex Diff 13P AG13 Dedicated Clock Input

P1-60 J1-47 Flex Diff 13N AH14 Dedicated Clock Input

P1-59 J1-14 Flex Diff 14P AD12

P1-57 J1-48 Flex Diff 14N AE12

P1-54 J1-15 Flex Diff 15P AG12

P1-56 J1-49 Flex Diff 15N AH13

P1-53 J1-16 Flex Diff 16P AF10

P1-55 J1-50 Flex Diff 16N AF11

P1-50 J1-17 Flex Diff 17P AH11

GX3700 Expansion Boards 143

Expansion

Board

Connector

Front

Panel User

Connector

FPGA pin

Description

FPGA Pin

Name

Remark

P1-52 J1-51 Flex Diff 17N AH12

P1-51 J1-18 Flex Diff 18P AE9

P1-49 J1-52 Flex Diff 18N AF9

P1-46 J1-19 Flex Diff 19P AG10

P1-48 J1-53 Flex Diff 19N AH10

P1-47 J1-20 Flex Diff 20P AF8

P1-45 J1-54 Flex Diff 20N AE8

P1-44 J1-21 Flex Diff 21P AG9

P1-42 J1-55 Flex Diff 21N AH8

P1-43 J1-22 Flex Diff 22P AE6

P1-41 J1-56 Flex Diff 22N AF6

P1-38 J1-23 Flex Diff 23P AG7

P1-40 J1-57 Flex Diff 23N AH7

P1-39 J1-24 Flex Diff 24P AE5

P1-37 J1-58 Flex Diff 24N AF5

P1-34 J1-25 Flex Diff 25P AG6

P1-36 J1-59 Flex Diff 25N AH6

P1-35 J1-26 Flex Diff 26P AF2

P1-33 J1-60 Flex Diff 26N AG1

P1-30 J1-27 Flex Diff 27P AH4

P1-32 J1-61 Flex Diff 27N AH5

P1-29 J1-28 Flex Diff 28P AE2

P1-31 J1-62 Flex Diff 28N AF1

P1-28 J1-29 Flex Diff 29P AG4

P1-26 J1-63 Flex Diff 29N AH3

P1-25 J1-30 Flex Diff 30P AD1

P1-27 J1-64 Flex Diff 30N AE1

P1-24 J1-31 Flex Diff 31P AG3

P1-22 J1-65 Flex Diff 31N AH2

P1-23 J1-32 Flex Diff 32P AC2

P1-21 J1-66 Flex Diff 32N AC1

P1-A,C J1-34,68 GND Power

P1-B J1-33,67 User 3.3V Power

P1-86 J2-1 FlexIO33 AH23 Routed to Expansion as Flex Diff 33P

P1-85 J2-2 FlexIO34 AF20 Routed to Expansion as Flex Diff 34N

P1-88 J2-3 FlexIO35 AH24 Routed to Expansion as Flex Diff 33N

P1-87 J2-4 FlexIO36 AE20 Routed to Expansion as Flex Diff 34P

144 GX3700 User’s Guide

Expansion

Board

Connector

Front

Panel User

Connector

FPGA pin

Description

FPGA Pin

Name

Remark

P1-90 J2-5 FlexIO37 AG25 Routed to Expansion as Flex Diff 35P

P1-89 J2-6 FlexIO38 AE21 Routed to Expansion as Flex Diff 36P

P1-92 J2-7 FlexIO39 AH25 Routed to Expansion as Flex Diff 35N

P1-91 J2-8 FlexIO40 AF21 Routed to Expansion as Flex Diff 36N

P1-94 J2-9 FlexIO41 AH26 Routed to Expansion as Flex Diff 37P

P1-93 J2-10 FlexIO42 AD22 Routed to Expansion as Flex Diff 38P

P1-96 J2-11 FlexIO43 AG27 Routed to Expansion as Flex Diff 37N

P1-95 J2-12 FlexIO44 AE22 Routed to Expansion as Flex Diff 38N

P1-98 J2-13 FlexIO45 AH27 Routed to Expansion as Flex Diff 39P

P1-97 J2-14 FlexIO46 AG24 Routed to Expansion as Flex Diff 40P

P1-100 J2-15 FlexIO47 AF26 Routed to Expansion as Flex Diff 39N

P1-099 J2-16 FlexIO48 AF23 Routed to Expansion as Flex Diff 40N

P1-102 J2-17 FlexIO49 AE23 Routed to Expansion as Flex Diff 41P

P1-101 J2-18 FlexIO50 AF24 Routed to Expansion as Flex Diff 42N

P1-104 J2-19 FlexIO51 AD24 Routed to Expansion as Flex Diff 41N

P1-103 J2-20 FlexIO52 AE24 Routed to Expansion as Flex Diff 42P

P1-106 J2-21 FlexIO53 AB1

P1-105 J2-22 FlexIO54 B1

P1-108 J2-23 FlexIO55 AB2

P1-107 J2-24 FlexIO56 C1

P1-110 J2-25 FlexIO57 AE4

P1-109 J2-26 FlexIO58 D1

P1-112 J2-27 FlexIO59 AD6

P1-111 J2-28 FlexIO60 D2

P1-114 J2-29 FlexIO61 AE7

P1-113 J2-30 FlexIO62 E1

P1-116 J2-31 FlexIO63 AD7

P1-115 J2-32 FlexIO64 E2

P1-A,C J2-34-66,68 GND Power

P1-B J2-33,67 User 3.3V Power

P1-179 J3-1 FlexIO65 AA18

P1-177 J3-2 FlexIO66 Y17

P1-175 J3-3 FlexIO67 AB17

P1-173 J3-4 FlexIO68 AC17

P1-171 J3-5 FlexIO69 AB16

P1-169 J3-6 FlexIO70 AC16

P1-167 J3-7 FlexIO71 Y15

GX3700 Expansion Boards 145

Expansion

Board

Connector

Front

Panel User

Connector

FPGA pin

Description

FPGA Pin

Name

Remark

P1-165 J3-8 FlexIO72 AA15

P1-163 J3-9 FlexIO73 Y14

P1-161 J3-10 FlexIO74 Y13

P1-159 J3-11 FlexIO75 AA13

P1-157 J3-12 FlexIO76 AB13

P1-155 J3-13 FlexIO77 AA1

P1-153 J3-14 FlexIO78 Y2

P1-151 J3-15 FlexIO79 Y1

P1-149 J3-16 FlexIO80 W2

P1-147 J3-17 FlexIO81 W1

P1-145 J3-18 FlexIO82 V3

P1-143 J3-19 FlexIO83 V1

P1-141 J3-20 FlexIO84 U3

P1-139 J3-21 FlexIO85 T2

P1-137 J3-22 FlexIO86 N2

P1-135 J3-23 FlexIO87 L2

P1-133 J3-24 FlexIO88 L1

P1-131 J3-25 FlexIO89 K2

P1-129 J3-26 FlexIO90 K1

P1-127 J3-27 FlexIO91 J1

P1-125 J3-28 FlexIO92 H2

P1-123 J3-29 FlexIO93 H1

P1-121 J3-30 FlexIO94 G2

P1-119 J3-31 FlexIO95 G1

P1-117 J3-32 FlexIO96 F1

P1-A,C J3-34-66,68 GND Power

P1-D J3-33,67 User 5V Power

P1-118 J4-1 FlexIO97 AC7

P1-120 J4-2 FlexIO98 AB7

P1-122 J4-3 FlexIO99 AC8

P1-124 J4-4 FlexIO100 AB8

P1-126 J4-5 FlexIO101 AH9

P1-128 J4-6 FlexIO102 AD9

P1-130 J4-7 FlexIO103 AC9

P1-132 J4-8 FlexIO104 AB9

P1-134 J4-9 FlexIO105 AA9

P1-136 J4-10 FlexIO106 Y9

146 GX3700 User’s Guide

Expansion

Board

Connector

Front

Panel User

Connector

FPGA pin

Description

FPGA Pin

Name

Remark

P1-138 J4-11 FlexIO107 AE10

P1-140 J4-12 FlexIO108 AC10

P1-142 J4-13 FlexIO109 AA10

P1-144 J4-14 FlexIO110 Y10

P1-146 J4-15 FlexIO111 AE11

P1-148 J4-16 FlexIO112 AC11

P1-150 J4-17 FlexIO113 AB11

P1-152 J4-18 FlexIO114 Y11

P1-154 J4-19 FlexIO115 AF12

P1-156 J4-20 FlexIO116 AC12

P1-158 J4-21 FlexIO117 Y18

P1-160 J4-22 FlexIO118 AD19

P1-162 J4-23 FlexIO119 AC19

P1-164 J4-24 FlexIO120 AB19

P1-166 J4-25 FlexIO121 AA19

P1-168 J4-26 FlexIO122 Y19

P1-170 J4-27 FlexIO123 AC20

P1-172 J4-28 FlexIO124 AB20

P1-174 J4-29 FlexIO125 AG21

P1-176 J4-30 FlexIO126 AD21

P1-178 J4-31 FlexIO127 AC21

P1-180 J4-32 FlexIO128 AB21

P1-A,C J4-34-66,68 GND Power

P1-D J4-33,67 User 5V Power

P1-1,3,5,7,9 N/A 2.5V Power

P1-

2,4,6,8,10

N/A VCC_IO

 VCC I/O of the I/O banks of FPGA used

on expansion board. Selectable on the

GX3700 carrier by jumper as 1.2V, 2.5V

or 3.3V.

P1-193,195,

197,199,201 N/A 1.2V

 Power

P1-205,207 N/A +12V Power

P1-208 N/A -12V Power

P1-194 N/A MClr Input, Master Clear

P1-198 PSpr0 Do Not Use

P1-200 PSpr1 Do Not Use

P1-202 PSpr2 Do Not Use

P1-204 PSpr3 Do Not Use

GX3700 Expansion Boards 147

Expansion

Board

Connector

Front

Panel User

Connector

FPGA pin

Description

FPGA Pin

Name

Remark

P1-184 PbID0 Output, Piggy Back ID. Pull up on carrier

P1-186 PbID1 Output, Piggy Back ID. Pull up on carrier

P1-188 PbID2 Output, Piggy Back ID. Pull up on carrier

P1-200 PbID3 Output, Piggy Back ID. Pull up on carrier

P1-189 FSpr0 L22 Output, Spare. Can be used as Function ID

P1-187 FSpr1 J16 Output, Spare. Can be used as Function ID

P1-185 FSpr2 J15 Output, Spare. Can be used as Function ID

P1-183 FSpr3 J14 Output, Spare. Can be used as Function ID

Table 8-1: Expansion Board P1 Pin Assignments

Notes for Expansion Board P1 connector:

1. Maximum 1A per pin.

2. PSpr[3..0] are reserved. Should be connected to ground using 1K-50K resistors.

3. PbID[3..0] are used to identify the expansion board. Leave pins unconnected for logic ‘1’ or connect to ground

for logic ‘0’. The GX3700 software driver can read these pins to identify the specific expansion board installed.

4. FSpr[3..0] are spare pins connected to the user FPGA. Should be connected to ground or 3.3V using 1K-50K

resistors if not used in the design. Can also be used as an additional identification field.

5. MClr is a Master Clear input to the Expansion board. It is active high and is asserted by the controller at power-

up or by a software command at any time.

6. The Flex I/O signals must never be driven more than VCC_IO. If higher voltage logic is used in the Expansion

board design, these signals must be protected.

7. During the user FPGA configuration phase, the Flex I/O pins have a weak pull-up that may cause an un-

intentional condition in the Expansion board. Pull-down resistors should be used where necessary.

148 GX3700 User’s Guide

GX3701 Expansion Board

The GX3700/GX3700e is provided with the GX3701– Flex I/O Feed Through Expansion Module. The GX3701

provides connection and isolation between the FPGA I/O and the 4 connectors located on the module’s front panel

using bus switches. The GX3700 FPGA supports LVTTL, LVDS logic levels and can also be configured for 1.2 /

2.5 / 3.3 V logic level. Each channel can be configured as an input or output or isolated. Via the user FPGA, each

I/O can be programmed for a specific logic level and current level. There are no active buffers on this board.

GX3701 Programming

Use the GXFPGA GxFpgaXXX driver functions to program the board. The functions are described in details in

Chapter 9. Some of the functions are also available from the software front panel.

GX3701 Expansion Board Specification

Number of Channels 160 I/O; up to 84 I/O can be configured as 42 differential I/O channels

4 I/O are single-ended or 2 differential clock inputs

Logic Family LVTTL, LVDS, configurable for 1.2 / 2.5 / 3.3 V logic; 5 V compatible; user

programmable via the FPGA

Output Current +/- 12 mA, sink or source, max. Programmable via the FPGA

Input Leakage Current +/- 10 uA

Power On State Default is disconnected at power on (unprogrammed FPGA) or defined by FPGA

program

Input Protection Overvoltage: -0.5 V to 7.0 V (input)

Short circuit: up to 8 outputs may be shorted at a time

GX3700 Expansion Boards 149

GX3702 Expansion Board

The GX3702 provides the same functionality as the GX3701 except the I/O configuration (connectors J1 – J4) is

compatible with National Instruments’ PXI 7811R and PXI 7813R modules’ I/O.

Connections to the GX3700 may be made with 68-pin VHDCI male plug connector. Shielded cables with matching

connectors are available from MTS. The I/O connections for the GX3702 are detailed in the tables below.

J1 – Flex I/O Bank A Connector

Pin# Function Pin# Function Pin# Function Pin# Function

1 GND 18 GND 35 Flex I/O 0 52 Flex I/O 17

2 GND 19 GND 36 Flex I/O 1 53 Flex I/O 18

3 GND 20 GND 37 Flex I/O 2 54 Flex I/O 19

4 GND 21 GND 38 Flex I/O 3 55 Flex I/O 20

5 GND 22 GND 39 Flex I/O 4 56 Flex I/O 21

6 GND 23 GND 40 Flex I/O 5 57 Flex I/O 22

7 GND 24 GND 41 Flex I/O 6 58 Flex I/O 23

8 GND 25 GND 42 Flex I/O 7 59 Flex I/O 24

9 GND 26 GND 43 Flex I/O 8 60 Flex I/O 25

10 GND 27 44 Flex I/O 9 61 Flex I/O 26

11 GND 28 45 Flex I/O 10 62 Flex I/O 27

12 GND 29 Flex I/O 28 46 Flex I/O 11 63 Flex I/O 29

13 GND 30 Flex I/O 30 47 Flex I/O12 64 Flex I/O 31

14 GND 31 Flex I/O 32 48 Flex I/O 13 65 Flex I/O 33

15 GND 32 Flex I/O 34 49 Flex I/O 14 66 Flex I/O 35

16 GND 33 Flex I/O 36 50 Flex I/O 15 67 Flex I/O 37

17 GND 34 Flex I/O 38 51 Flex I/O 16 68 Flex I/O 39

Table 8-2: J1 Flex IO Bank A Pin Out

150 GX3700 User’s Guide

J2 – Flex I/O Bank B Connector

Pin# Function Pin# Function Pin# Function Pin# Function

1 GND 18 GND 35 Flex I/O 40 52 Flex I/O 57

2 GND 19 GND 36 Flex I/O 41 53 Flex I/O 58

3 GND 20 GND 37 Flex I/O 42 54 Flex I/O 59

4 GND 21 GND 38 Flex I/O 43 55 Flex I/O 60

5 GND 22 GND 39 Flex I/O 44 56 Flex I/O 61

6 GND 23 GND 40 Flex I/O 45 57 Flex I/O 62

7 GND 24 GND 41 Flex I/O 46 58 Flex I/O 63

8 GND 25 GND 42 Flex I/O 47 59 Flex I/O 64

9 GND 26 GND 43 Flex I/O 48 60 Flex I/O 65

10 GND 27 44 Flex I/O 49 61 Flex I/O 66

11 GND 28 45 Flex I/O 50 62 Flex I/O 67

12 GND 29 Flex I/O 68 46 Flex I/O 51 63 Flex I/O 69

13 GND 30 Flex I/O 70 47 Flex I/O 52 64 Flex I/O 71

14 GND 31 Flex I/O 72 48 Flex I/O 53 65 Flex I/O 73

15 GND 32 Flex I/O 74 49 Flex I/O 54 66 Flex I/O 75

16 GND 33 Flex I/O 76 50 Flex I/O 55 67 Flex I/O 77

17 GND 34 Flex I/O 78 51 Flex I/O 56 68 Flex I/O 79

Table 8-3: J2 Flex IO Bank B Pin Out

J3 – Flex I/O Bank C Connector

Pin# Function Pin# Function Pin# Function Pin# Function

1 GND 18 GND 35 Flex I/O 80 52 Flex I/O 97

2 GND 19 GND 36 Flex I/O 81 53 Flex I/O 98

3 GND 20 GND 37 Flex I/O 82 54 Flex I/O 99

4 GND 21 GND 38 Flex I/O 83 55 Flex I/O 100

5 GND 22 GND 39 Flex I/O 84 56 Flex I/O 101

6 GND 23 GND 40 Flex I/O 85 57 Flex I/O 102

7 GND 24 GND 41 Flex I/O 86 58 Flex I/O 103

8 GND 25 GND 42 Flex I/O 87 59 Flex I/O 104

9 GND 26 GND 43 Flex I/O 88 60 Flex I/O 105

10 GND 27 44 Flex I/O 89 61 Flex I/O 106

11 GND 28 45 Flex I/O 90 62 Flex I/O 107

12 GND 29 Flex I/O 108 46 Flex I/O 91 63 Flex I/O 109

13 GND 30 Flex I/O 110 47 Flex I/O 92 64 Flex I/O 111

14 GND 31 Flex I/O 112 48 Flex I/O 93 65 Flex I/O 113

15 GND 32 Flex I/O 114 49 Flex I/O 94 66 Flex I/O 115

16 GND 33 Flex I/O 116 50 Flex I/O 95 67 Flex I/O 117

17 GND 34 Flex I/O 118 51 Flex I/O 96 68 Flex I/O 119

Table 8-4: J3 Flex IO Bank C Pin Out

GX3700 Expansion Boards 151

J4 – Flex I/O Bank D Connector

Pin# Function Pin# Function Pin# Function Pin# Function

1 GND 18 GND 35 Flex I/O 120 52 Flex I/O 137

2 GND 19 GND 36 Flex I/O 121 53 Flex I/O 138

3 GND 20 GND 37 Flex I/O 122 54 Flex I/O 139

4 GND 21 GND 38 Flex I/O 123 55 Flex I/O 140

5 GND 22 GND 39 Flex I/O 124 56 Flex I/O 141

6 GND 23 GND 40 Flex I/O 125 57 Flex I/O 142

7 GND 24 GND 41 Flex I/O 126 58 Flex I/O 143

8 GND 25 GND 42 Flex I/O 127 59 Flex I/O 144

9 GND 26 GND 43 Flex I/O 128 60 Flex I/O 145

10 GND 27 44 Flex I/O 129 61 Flex I/O 146

11 GND 28 45 Flex I/O 130 62 Flex I/O 147

12 GND 29 Flex I/O 148 46 Flex I/O 131 63 Flex I/O 149

13 GND 30 Flex I/O 150 47 Flex I/O 132 64 Flex I/O 151

14 GND 31 Flex I/O 152 48 Flex I/O 133 65 Flex I/O 153

15 GND 32 Flex I/O 154 49 Flex I/O 134 66 Flex I/O 155

16 GND 33 Flex I/O 156 50 Flex I/O 135 67 Flex I/O 157

17 GND 34 Flex I/O 158 51 Flex I/O 136 68 Flex I/O 159

Table 8-5: J4 Flex IO Bank D Pin Out

I/O: Input/ Output, R: Reserved, DNU: Do Not Use, P: Power/GND

GX3702 Expansion Board Specification

Number of Channels 160 I/O; up to 84 I/O can be configured as 42 differential I/O channels

4 I/O are single-ended or 2 differential clock inputs

Logic Family LVTTL, LVDS, configurable for 1.2 / 2.5 / 3.3 V logic; 5 V compatible,

programmable per pin via the FPGA

Output Current +/- 12 mA, sink or source, max; programmable via the FPGA

Input Leakage Current +/- 10 uA

Power On State Default is disconnected at power on (unprogrammed FPGA) or defined by FPGA

program

Input Protection Overvoltage: -0.5 V to 7.0 V (input)

Short circuit: up to 8 outputs may be shorted at a time

152 GX3700 User’s Guide

GX3788 Expansion Board

The GX3700/GX3700e can be equipped with the GX3788– Digital and Analog I/O Expansion Module. The

GX3788 is a user configurable, FPGA-based, 3U PXI multi-function card which supports digital and analog test

capabilities. The GX3788 is based on the GX3700 FPGA card and includes an integral daughter board which

provides (8) differential input, 16-bit, 250 MS/s A to D converters and (8), 16-bit, 1 MS/s, D to A converters. The

module's FPGA is pre-programmed, providing access to all digital and analog functions. Alternatively, users can

program or modify the FPGA, allowing user to adapt the module to their own specific test needs. The design of the

FPGA employs Altera’s free Quartus II Web Edition tool set. Once the user has compiled the FPGA design, the

configuration file can be loaded into the FPGA directly or via an on-board EEPROM. The digital and analog I/O

lines are routed to the 4 front connections (J1 to J4)

The GX3788’s digital I/O signals are TTL compatible and can be programmed as inputs or outputs. The A to D

channels can be configured as 8 differential, or 16 single ended inputs and support a sampling rate of up to 250

KS/s. Alternately, two channel operation can support a sampling rate of 1 MS/s. The D to A channels support a

simultaneous sampling rate of 1 MS/s. The FPGA device supports up to four phase lock loops for clock synthesis,

clock generation and for support of the I/O interface. An on-board 80 MHz oscillator is available for use with the

FGPA device or alternatively, the PXI 10 MHz clock can be used as a clock reference by the FPGA.

GX3788 Programming

Use the GXFPGA Gx3788xxx driver functions to program the board. The functions are described in detail in

Chapter 9. Some of the functions are also available from the software front panel (DAQ page).

GX3700 Expansion Boards 153

GX3788 Digital and Analog Multi-Function Expansion Board Specification

Digital I/O Channels

Logic Families LVTTL, LVDS, configurable for 1.2 / 2.5 / 3.3 V logic; 5 V compatible,

programmable per pin via the FPGA

Current ±12.0 mA, max. Programmable per pin via the FPGA

Input Leakage Current ±10 µA

Power on State Default is disconnected at power on (unprogrammed FPGA) or defined by

FPGA program

Number of Channels 32 Differential digital I/O lines

64 Single-ended digital I/O line

FIFO Depth 2047 Samples

Maximum FIFO Clock Rate 10 MHz

Clock Sources PXI triggers, Ext Trigger, Star X, PXI Clk10, PXI Clk100 (Express

version), DSTAR (Express version), Local bus

Protection Overvoltage: -0.5 V to 7.0 V (input)

Short circuit: up to 8 outputs may be shorted at a time

Analog Input Channels

Number of Channels 8 differential or 16 single-ended

Sample Rate 250 KS/s (simultaneous) or

1 MS/s (two channels)

Bus Transfer Modes DMA, Interrupt, Register I/O

Resolution 16-bits

Accuracy +/- 13.60V Range: +/- 7.50mV

+/- 10.24V Range: +/- 6.50mV

+/- 5.12V Range: +/- 4.50mV

+/- 2.56V Range: +/- 4.0mV

Input Voltage Ranges (FS VDC) ± 13.6*

± 10.24

± 5.12

± 2.56

± 1.28

± 0.64

* Uses the gain value for the 20.48 VDC range

Input Impedance 500 M ohms

Analog BW (3 dB) 8 MHz

Over Voltage Protection ± 24V

CMRR, DC to 60 Hz 90 dB

Channel to Channel Crosstalk -120 dB (adj. ch.), Fin = 10 KHz

Triggering Trigger in / Trigger out (FPGA controlled)

154 GX3700 User’s Guide

Analog Output Channels

Number of Channels 8

Conversion Rate 1 MS/s (simultaneous)

Resolution 16-bits

Output Accuracy +/- 6.0 mV

Output Range ± 10 V

Output Drive Current 3 mA

Short Circuit Current 8 mA

Output Slew Rate 6 V/us

Timing Sources

PXI Bus 10 MHz

Internal 80 MHz oscillator, ±20 ppm

FPGA and Memory

FPGA Type Altera Stratix III, EP3SL50F780

Number of PLLs Four

Logic Elements 47.5 K

Internal Memory 1.836 Mb

On-Board Memory 256 K x 32 SSRAM

On-Board Flash 16 MB

Power

3.3 VDC 3.6 A (typ); 4.9 A (max)

5 VDC 0.045 A (max)

User 3.3 V (@ J1, J2 connector) 1 A, max

User 5 V (@ J3, J4 connector) 1 A, max

Environmental

Operating Temperature 0 °C to +50 °C

Storage Temperature -20 °C to +70 °C

Size 3U PXI

Weight 200 g

Function Reference 155

Chapter 9 - Function Reference

Introduction

The GXFPGA driver functions reference chapter is organized in alphabetical order. Each function is presented

starting with the syntax of the function, a short description of the function parameters description and type followed

by a Comments, an Example (written in C), and a See Also sections.

All function parameters follow the same rules:

 Strings are ASCIIZ (null or zero character terminated).

 Most function’s first parameter is nHandle (16-bit integer). This parameter is required for operating the

board and is returned by the GxFpgaInitialize or the GxFpgaInitializeVisa functions. The nHandle is

used to identify the board when calling a function for programming and controlling the operation of that

board.

 All functions return a status with the last parameter named pnStatus. The pnStatus is zero if the function

was successful, or less than a zero on error. The description of the error is available using the

GxFpgaGetErrorString function or by using a predefined constant, defined in the driver interface files:

GXFPGA.H, GXFPGA.BAS, GXFPGA.VB, GXFPGA.PAS or GXFPGA.DRV.

 Parameter name are prefixed as follows:

Prefix Type Example

a Array, prefix this before the simple type. anArray (Array of

Short)

n Short (signed 16-bit) nMode

d Double - 8 bytes floating point dReading

dw Double word (unsigned 32-bit) dwTimeout

l Long (signed 32-bit) lBits

p Pointer. Usually used to return a value. Prefix this before the simple

type.

pnStatus

sz Null (zero value character) terminated string szMsg

w Unsigned short (unsigned 16-bit) wParam

hwnd Window handle (32-bit integer). hwndPanel

Table 9-1: Parameter Prefixes

156 GX3700 User’s Guide

GXFPGA Functions

The following list is a summary of functions available for the GX3700:

Driver Functions Description

General Functions

GxFpgaInitialize Initializes the driver for the board at the specified slot number

using HW. The function returns a handle that can be used with

other GXFPGA functions to program the board

GxFpgaInitializeVisa Initializes the driver for the specified slot using VISA. The

function returns a handle that can be used with other GXFPGA

functions to program the board.

GxFpgaReset Resets the GX3700 interface FPGA and User FPGA to their

default state.

GxFpgaGetBoardSummary Returns the board summary.

GxFpgaGetBoardType Returns the board type.

GxFpgaGetDriverSummary Returns the driver name and version.

GxFpgaGetErrorString Returns the error string associated with the specified error

number.

GxFpgaPanel Opens the instrument panel dialog to used to interactively control

the board.

FPGA Settings Functions

GxFpgaGetEepromSummary Returns the timestamp and filename of the last FPGA

configuration written to EEPROM.

GxFpgaGetExpansionBoardID Returns the current Expansion Board ID.

GxFpgaLoad Loads the volatile FPGA or the non volatile EEPROM with

FPGA configuration data in the form of SVF or RPD files

respectively.

GxFpgaLoadFromEeprom Loads the FPGA with the contents of the EEPROM.

GxFpgaLoadStatus Returns the progress of the last asynchronous load in percentage.

GxFpgaLoadStatusMessage Returns a string describes the current load progress of the last

asynchronous load.

GxFpgaRead Reads the specified number of data elements from the User’s

FPGA specified BAR memory.

GxFpgaReadRegister Reads a 32 bit User’s FPGA register.

GxFpgaWrite Writes the specified number of data elements to the User’s

FPGA specified BAR memory.

GxFpgaWriteRegister Writes a buffer of 32 bit double words to the User’s FPGA’s

register space.

Event (Interrupt) Functions

GxFpgaSetEvent Enables or disables an event handler

GxFpgaDiscardEvents Clears the events queue

GxFpgaWaitOnEvent Waits until event received or timeout occurred

Function Reference 157

Driver Functions Description

DMA Functions

GxFpgaDmaFreeMemory Free the DMA block of continues physical memory that was

previously allocated when the user called GxFpgaDmaTransfer

API

GxFpgaDmaGetTransferStatus Returns the DMA transfer status register.

GxFpgaDmaTransfer Transfers a block of data using DMA.

Upgrade firmware functions

GxFpgaUpgradeFirmware Upgrades the board’s firmware.

GxFpgaUpgradeFirmwareStatus Monitor the firmware upgrade process.

Gx3788 functions

Gx3788Initialize Initializes the driver for the board at the specified slot number

using HW. The function returns a handle that can be used with

other GX3788 functions to program the board

Gx3788InitializeVisa Initializes the driver for the specified slot using VISA. The

function returns a handle that can be used with other GX3788

functions to program the board.

Gx3788Reset Resets the GX3788 to its default state.

Gx3788Panel Opens the instrument panel dialog to used to interactively control

the board.

Gx3788AnalogInGetGroundSource Returns the analog input ground source

Gx3788AnalogInMeasureChannel Measure voltage from analog input channel

Gx3788AnalogInScanGetChannelListIndex Returns the analog input channel from index

Gx3788AnalogInScanGetCount Returns the analog input scan count

Gx3788AnalogInScanGetSampleRate Returns the analog input scan sample rate

Gx3788AnalogInScanGetLastRunCount Returns the analog input scan count of the last run

Gx3788AnalogInScanIsRunning Returns the status of the analog input scanning

Gx3788AnalogInScanReadMemoryRawData Reads the analog input memory in the form of raw data

Gx3788AnalogInScanReadMemoryVoltages Reads the analog input memory in the form of voltages

Gx3788AnalogInScanSetChannelListIndex Sets the analog input channel at an index

Gx3788AnalogInScanSetCount Sets the analog input scan count

Gx3788AnalogInScanSetSampleRate Sets the analog input scan sample rate

Gx3788AnalogInScanStart Starts the analog input scan process

Gx3788AnalogInSetGroundSource Sets the analog input ground source

Gx3788AnalogOutGetOutputState Returns the analog output state

Gx3788AnalogOutGetVoltage Returns the analog output voltage value

Gx3788AnalogOutReset Resets the analog output settings.

Gx3788AnalogOutSetOutputState Sets the analog output state

Gx3788AnalogOutSetVoltage Sets the analog output voltage value

Gx3788GetBoardSummary Returns the board summary.

Gx3788GetCalibrationInfo Returns the board calibration info

158 GX3700 User’s Guide

Driver Functions Description

Gx3788PioGetPort Returns the digital port output data value

Gx3788PioGetPortChannel Returns the digital channel output data value

Gx3788PioGetPortDirection Returns the digital port direction state

Gx3788PioGetPortChannelDirection Returns the digital channel direction state

Gx3788PioReadPort Reads the input state of 32 channels in the specified digital port

Gx3788PioReadPortChannel Reads the input state of the specified digital port channel

Gx3788PioResetPort Resets the digital port to default settings

Gx3788PioResetPortChannel Resets the digital port channel to default settings

Gx3788PioSetPort Sets the digital port output data value

Gx3788PioSetPortChannel Sets the digital channel output data value

Gx3788PioSetPortDirection Sets the digital port direction state

Gx3788PioSetPortChannelDirection Sets the digital channel direction state

Gx3788TriggerGetOutputLevel Returns trigger output level

Gx3788TriggerReadInputLevel Reads back the trigger input level

Gx3788TriggerSetOutputLevel Sets the trigger output level

Function Reference 159

GxFpgaDiscardEvents

Purpose

Clears the event queue.

Syntax

GxFpgaDiscardEvents (nHandle, nEventType, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

nEventType SHORT Event type. Use the constant GT_EVENT_INTERRUPT (1). No other value is

supported.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The function clears the event queue and remove all pending events. Setting an event handler using the

GxFpgaSetEvent automatically clears the event queue.

Example

The following example uses discard events to reset the queue after lengthy operation:

GxFpgaInitialize (1, &nHandle, &nStatus);

GxFpgaSetEvent(nHandle, GT_EVENT_INTERRUPT, TRUE, NULL, (PVOID)1, &nStatus);

while (TRUE)

{

 ! wait up to 1000 ms for the event

 GxFpgaWaitOnEvent(nHandle, GT_EVENT_INTERRUPT, 1000, &nStatus);

 if (nStatus!=0) ! success event occurred

 { printf(“no event occurred - exiting”);

 break;

 }

 else

 { ! do something lengthy …

 ! now ready to receive more events

 GxFpgaDiscardEvents(nHandle, GT_EVENT_INTERRUPT, &nStatus);

}

See Also

GxFpgaInitialize, GxFpgaGetErrorString, GxFpgaWaitOnEvent, GxFpgaSetEvent

160 GX3700 User’s Guide

GxFpgaDmaFreeMemory

Purpose

Free the DMA block of continues physical memory that was previously allocated when the user called

GxFpgaDmaTransfer API.

Syntax

GxFpgaDmaFreeMemory (nHandle, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The first time the use calls the GxFpgaDmaTransfer API, a 64KB block of continues physical memory is allocated

for the DMA usage. The user can free this block of physical memory back to the OS by calling this function.

Example

The following example free any previously allocated block of 64KB of continues physical memory.

SHORT nStatus;

GxFpgaDmaFreeMemory (nHandle, &nStatus);

See Also

GxFpgaDmaTransfer, GxFpgaGetErrorString

Function Reference 161

GxFpgaDmaGetTransferStatus

Purpose

Returns the DMA transfer status register.

Syntax

GxFpgaDmaGetTransferStatus (nHandle, pnDmaStatus, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pnDmaStatus SHORT 0. No DMA Transfer

1. DMA Transfer is in progress.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example returns the DMA transfer status:

SHORT nDmaStatus;

GxFpgaDmaGetTransferStatus (nHandle, &nDmaStatus, &nStatus);

See Also

GxFpgaDmaTransfer, GxFpgaGetErrorString

162 GX3700 User’s Guide

GxFpgaDmaTransfer

Purpose

Transfers a block of data using DMA.

Syntax

GxFpgaDmaTransfer (nHandle, bDmaRd, pvData, nElementSize, dwSize, dwMode, pvOp, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

bDmaRd BOOL Transfer operation:

0. GXFPGA_DMA_READ = DMA write opearation. The function will write the

buffer data (pvData) content to the User’s FLEX FPGA memory location.

1. GXFPGA_DMA_WRITE = DMA read opearation. The function will copy the

speciread from the User’s FLEX FPGA memory location to the buffer (pvData).

pvData PVOID Pointer to an array of data. The array must be greater or equal to dwSize parameter.

nElementSize SHORT The pvData buffer element size.

dwSize DWORD Number of elements in the pvData buffer. Maximum number of bytes that can be

transferred at once is 65528.

dwMode DWORD Not used.

pvOp PVOID Not used.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The function utilizes the built-in DMA capabilities in order to transfer data to or from the User’s FLEX FPGA at the

fastest speed.

Note: The user need to setup the path to the target memory as it design depended.

Example

The following example read a block of 256 bytes of data from User’s FLEX FPGA memory location to the buffer:

DWORD adwData[256]

GxFpgaDmaTransfer (nHandle, GXFPGA_DMA_READ, 0, &adwData, 4, 256, 0, 0, &nStatus);

See Also

GxFpgaDmaGetTransferStatus, GxFpgaGetErrorString

Function Reference 163

GxFpgaGetBoardSummary

Purpose

Returns the board information.

Syntax

GxFpgaGetBoardSummary (nHandle, pszSummary, nMaxLen, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pszSummary PSTR Buffer to contain the returned board info (null terminated) string.

nMaxLen SHORT pszSummary buffer size.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The function returns the board information including the board firmware version, serial number and user FPGA part

number.

The Gx3700 board comes installed with one of the following the following Stratix III user FPGA parts:

 EP3SL50F780

 EP3SL70F780

 EP3SL110F780

 EP3SL150F780

 EP3SL200F780

 EP3SL340F780

 EP3SE50F780

 EP3SE80F780

 EP3SE110F780

 EP3SLE260F780.

Example

The following example returns the board information:

CHAR szSummary[1024];

GxFpgaGetBoardSummary (nHandle, szSummary, 1024, &nStatus);

See Also

GxFpgaInitialize, GxFpgaGetEepromSummary, GxFpgaGetErrorString

164 GX3700 User’s Guide

GxFpgaGetBoardType

Purpose

Returns the board type.

Syntax

GxFpgaGetBoardType (nHandle, pnType, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pnType PSHORT Returned board type:

0. GXFPGA_UNKNOWN_BOARD_TYPE: unknown board type

1. GXFPGA_BOARD_TYPE_GX3500: board type is GX3500

2. GXFPGA_BOARD_TYPE_GX3500E: board type is GX3500E

3. GXFPGA_BOARD_TYPE_GX3700: board type is GX3700

4. GXFPGA_BOARD_TYPE_GX3700E: board type is GX3700E

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example returns the board type:

SHORT nType;

GxFpgaGetBoardType(nHandle, &nType, &nStatus);

See Also

GxFpgaInitialize, GxFpgaGetEepromSummary, GxFpgaGetErrorString

Function Reference 165

GxFpgaGetEepromSummary

Purpose

Returns the timestamp and filename of the last FPGA configuration written to EEPROM.

Syntax

GxFpgaGetEepromSummary (nHandle, pszSummary, nMaxLen, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pszSummary PSTR Buffer to contain a summary indicating last FPGA EEPROM write timestamp and file

name.

nMaxLen SHORT pszSummary buffer size.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The function returns the time stamp and file name indicating the last recorded EEPROM loading.

Example

The following example returns the EEPROM summary:

CHAR szSummary[1024];

GxFpgaGetEepromSummary (nHandle, szSummary, 1024, &nStatus);

See Also

GxFpgaLoad, GxFpgaGetBoardSummary, GxFpgaGetErrorString

166 GX3700 User’s Guide

GxFpgaGetDriverSummary

Purpose

Returns the driver name and version.

Syntax

GxFpgaGetDriverSummary (pszSummary, nSummaryMaxLen, pdwVersion, pnStatus)

Parameters

Name Type Comments

pszSummary PSTR Buffer to the returned driver summary string.

nSummaryMaxLen SHORT The size of the summary string buffer.

pdwVersion PDWORD Returned version number. The high order word specifies the major version

number where the low order word specifies the minor version number.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The returned string is: "GXFPGA Driver for GX3700. Version 1.00, Copyright © 2009 Marvin Test Solutions –

MTS inc.".

Example

The following example prints the driver version:

CHAR sz[128];

DWORD dwVersion;

SHORT nStatus;

GxFpgaGetDriverSummary (sz, sizeof sz, &dwVersion, &nStatus);

printf("Driver Version %d.%d", (INT)(dwVersion>>16), (INT)

 dwVersion &0xFFFF);

See Also

GxFpgaGetBoardSummary, GxFpgaGetErrorString

Function Reference 167

GxFpgaGetErrorString

Purpose

Returns the error string associated with the specified error number.

Syntax

GxFpgaGetErrorString (nError , pszMsg, nErrorMaxLen, pnStatus)

Parameters

Name Type Comments

nError SHORT Error number.

pszMsg PSTR Buffer to the returned error string.

nErrorMaxLen SHORT The size of the error string buffer.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The function returns the error string associated with the nError as returned from other driver functions.

The following table displays the possible error values; not all errors apply to this board type:

Resource Errors

0 No error has occurred

-1 Unable to open the HW driver. Check if HW is properly installed

-2 Board does not exist in this slot/base address

-3 Different board exist in the specified PCI slot/base address

-4 PCI slot not configured properly. You may configure using the PciExplorer from the Windows Control

Panel

-5 Unable to register the PCI device

-6 Unable to allocate system resource for the device

-7 Unable to allocate memory

-8 Unable to create panel

-9 Unable to create Windows timer

-10 Bad or Wrong board EEPROM

-11 Not in calibration mode

-12 Board is not calibrated

-13 Function is not supported by the specified board

General Parameter Errors

-20 Invalid or unknown error number

-21 Invalid parameter

-22 Illegal slot number

-23 Illegal board handle

-24 Illegal string length

-25 Illegal operation mode

168 GX3700 User’s Guide

-26 Parameter is out of the allowed range

VISA Errors

-30 Unable to Load VISA32/64.DLL, make sure VISA library is installed

-31 Unable to open default VISA resource manager, make sure VISA is properly installed

-32 Unable to open the specified VISA resource

-33 VISA viGetAttribute error

-34 VISA viInXX error

-35 VISA ViMapAddress error

Miscellaneous Errors

-41 Unable to enable interrupt or event

-42 Unable to disable interrupt or event

-43 Event or interrupt timeout

-44 Event or interrupt wait error

Board Specific Errors

-50 Offset is out of range

-51 File Name is not valid

-52 Programming file could not be opened

-53 User FPGA Volatile Programming error

-54 User FPGA EEPROM Programming error

-55 Cannot program through software, External Programmer Detected

-56 FPGA or EEPROM is currently being loaded and is busy

-57 FPGA could not be reloaded with the EEPROM data

-58 Size and Offset must be multiple of 4

-59 Expansion board required for function not found

-60 FPGA device program failure

-61 Mismatch the data width and number of bytes

-62 Offset must be multiple of 4

-63 Invalid data width, can be 1 byte, 2 bytes or 4 bytes

-64 Invalid DMA data size

-65 Invalid DMA board's offset

-66 Error: timeout when reading using DMA.

-67 Error: timeout when writing using DMA

-70 Invalid time stamp in on-board EEPROM

-71 Error: timeout when reading from the on-board EEPROM

-72 Error: timeout when writing to the on-board EEPROM

Function Reference 169

Example

The following example initializes the board. If the initialization failed, the following error string is printed:

CHAR sz[256];

SHORT nStatus, nHandle;

GxFpgaInitialize (3, &Handle, &Status);

if (nStatus<0)

{

 GxFpgaGetErrorString(nStatus, sz, sizeof sz, &nStatus);

 printf(sz); // prints the error string returns

}

170 GX3700 User’s Guide

GxFpgaGetExpansionBoardID

Purpose

Returns the current Expansion Board ID.

Syntax

GxFpgaGetExpansionBoardID (nHandle, pucExpansionBoardID, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pucExpansionBoardID PBYTE Returned value that identifies the currently installed expansion board.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The returned expansion board ID identifies the type of expansion board being used:

ucExpansionBoardID Type of board Examples

0x1 PIO expansion board GX3701, GX3709, GX3710

0xF No expansion board installed N/A

Comments

The expansion board ID is read from P8 pins 19, 21, 23 and 25 to from a 4 bit integer (0-15).

Example

The following example returns the expansion board ID to the ucExpansionBoardID:

BYTE ucExpansionBoardID;

GxFpgaGetExpansionBoardID (nHandle, &ucExpansionBoardID, &nStatus);

See Also

GxFpgaGetErrorString

Function Reference 171

GxFpgaInitialize

Purpose

Initializes the driver for the board at the specified slot number. The function returns a handle that can be used with

other GXFPGA functions to program the board.

Syntax

GxFpgaInitialize (nSlot, pnHandle, pnStatus)

Parameters

Name Type Comments

nSlot SHORT GX3700 board slot number on the PXI bus.

pnHandle PSHORT Returned handle for the board. The handle is set to zero on error and <> 0 on

success.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The GxFpgaInitialize function verifies whether or not the GX3700 board exists in the specified PXI slot. The

function does not change any of the board settings. The function uses the HW driver to access and program the

board.

The Marvin Test Solutions HW device driver is installed with the driver and is the default device driver. The

function returns a handle that for use with other Counter functions to program the board. The function does not

change any of the board settings.

The specified PXI slot number is displayed by the PXI/PCI Explorer applet that can be opened from the Windows

Control Panel. You may also use the label on the chassis below the PXI slot where the board is installed. The

function accepts two types of slot numbers:

 A combination of chassis number (chassis # x 256) with the chassis slot number. For example 0x105 (chassis 1

slot 5).

 Legacy nSlot as used by earlier versions of HW/VISA. The slot number contains no chassis number and can be

changed using the PXI/PCI Explorer applet (1-255).

The returned handle pnHandle is used to identify the specified board with other GX3700 functions.

Example

The following example initializes two GX3700 boards at slot 1 and 2.

SHORT nHandle1, nHandle2, nStatus;

GxFpgaInitilize (1, &nHandle1, &nStatus);

GxFpgaInitilize (2, &nHandle2, &nStatus);

if (nHandle1==0 || nHandle2==0)

{

 printf(“Unable to Initialize the board”)

return;

}

See Also

GxFpgaInitializeVisa, GxFpgaReset, GxFpgaGetErrorString

172 GX3700 User’s Guide

GxFpgaInitializeVisa

Purpose

Initializes the driver for the specified PXI slot using the default VISA provider.

Syntax

GxFpgaInitializeVisa (szVisaResource, pnHandle, pnStatus)

Parameters

Name Type Comments

szVisaResource LPCTSTR String identifying the location of the specified board in order to establish a

session.

pnHandle PSHORT Returned Handle (session identifier) that can be used to call any other operations

of that resource

pnStatus PSHORT Returned status: 0 on success, 1 on failure.

Comments

The GxFpgaInitializeVisa opens a VISA session to the specified resource. The function uses the default VISA

provider configured in your system to access the board. You must ensure that the default VISA provider support

PXI/PCI devices and that the board is visible in the VISA resource manager before calling this function.

The first argument szVisaResource is a string that is displayed by the VISA resource manager such as NI

Measurement and Automation (NI_MAX). It is also displayed by Marvin Test Solutions PXI/PCI Explorer as shown

in the prior figure. The VISA resource string can be specified in several ways as follows:

 Using chassis, slot, for example: “PXI0::CHASSIS1::SLOT5”

 Using the PCI Bus/Device combination, for example: “PXI9::13::INSTR” (bus 9, device 9).

 Using alias, for example: “FPGA1”. Use the PXI/PCI Explorer to set the device alias.

The function returns a board handle (session identifier) that can be used to call any other operations of that resource.

The session is opened with VI_TMO_IMMEDIATE and VI_NO_LOCK VISA attributes. On terminating the

application the driver automatically invokes viClose() terminating the session.

Example

The following example initializes a GX3700 boards at PXI bus 5 and device 11.

SHORT nHandle, nStatus;

GxFpgaInitializeVisa (“PXI5::11::INSTR”, &nHandle, &nStatus);

if (nHandle==0)

{

 printf("Unable to Initialize the board")

 return;

}

See Also

GxFpgaInitialize, GxFpgaReset, GxFpgaGetErrorString

Function Reference 173

GxFpgaLoad

Purpose

Loads the volatile FPGA or the non-volatile EEPROM with FPGA configuration data in the form of SVF or RPD

files respectively.

Syntax

GxFpgaLoad (nHandle, nTarget, szFileName nMode, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

nTarget SHORT Target can be as follows:

0. GXFPGA_LOAD_TARGET_VOLATILE

1. GXFPGA_LOAD_TARGET_EEPROM

szFileName LPCSTR Path and file name of the file containing the FPGA configuration data. If the

programming mode is Volatile, then the file will have a .SVF extension. If the

programming mode is EEPROM, then the file will have an .RPD extension.

nMode SHORT The loading mode can be as follows:

0. GXFPGA_LOAD_MODE_SYNC

1. GXFPGA_LOAD_MODE_ASYNC

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

This function can operate in synchronous mode or asynchronous mode. Synchronous mode means that the function

is blocking and does not return until after the load operation has completed. The Asynchronous mode means that the

function is non-blocking and returns immediately and allows the calling program to check the load status by calling

GxFpgaLoadStatus.

Use the GxFpgaLoadFromEeprom function to load the volatile memory from the EEPROM. By default, when the

card is powered up the volatile memory will be automatically load the configuration from the EEPROM.

Example

The following example loads the volatile FPGA with a Serial Vector File (SVF) in synchronous mode

GxFpgaLoad(nHandle, GXFPGA_LOAD_TARGET_VOLATILE, “C:\\MyDesign.SVF”, GXFPGA_LOAD_MODE_SYNC

&nStatus);

See Also

GxFpgaLoadStatus, GxFpgaLoadStatusMessage, GxFpgaGetEepromSummary, GxFpgaLoadFromEeprom,

GxFpgaGetErrorString

174 GX3700 User’s Guide

GxFpgaLoadFromEeprom

Purpose

Loads the FPGA with the contents of the EEPROM.

Syntax

GxFpgaLoadFromEeprom (nHandle, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

By default, when JP2 jumper is present, when the card is powered up the volatile memory will be automatically

loaded with the configuration from the EEPROM.

Example

The following example loads the FPGA with the contents of the EEPROM:

GxFpgaLoadFromEeprom (nHandle, &nStatus);

See Also

GxFpgaLoad, GxFpgaGetErrorString

Function Reference 175

GxFpgaLoadStatus

Purpose

Returns the progress of the last asynchronous load in percentage.

Syntax

GxFpgaLoadStatus (nHandle, pnPercentCompleted, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pnPercentCompleted PSHORT The percent complete of the current load, 0-100.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

100 percent indicates that the load has completed. This function is used to check the load status after calling

GxFpgaLoad in Asynchronous mode.

Example

The following load an FPGA file in asynchronous mode and prints the progress:

SHORT nPercentage=0, nPriorPrecentage, nStatus, n;

CHAR szMsg[1024];

GxFpgaLoad(nHandle, GXFPGA_LOAD_TARGET_VOLATILE, “C:\\MyDesign.SVF”, GXFPGA_LOAD_MODE_ASYNC

&nStatus);

while (nStatus==0 && nPrecentage<100)

{ GxFpgaLoadStauts (nHandle, &nPercentage, &nStatus);

 GxFpgaLoadStautsMessage (nHandle, szMsg, sizeof szMsg, &n);

 if (nPrecentage!=nPriorPrecentage)

 printf(“Load Complete=%i, Status=%s”, nPrecentage, szMsg);

 nPriorPrecentage=nPrecentage;

 sleep(300);

}

printf(“Load Complete=%i, Status=%s”, nPrecentage, szMsg);

See Also

GxFpgaLoad, GxFpgaLoadStatusMessage, GxFpgaGetErrorString

176 GX3700 User’s Guide

GxFpgaLoadStatusMessage

Purpose

Returns a string describes the current load progress of the last asynchronous load.

Syntax

GxFpgaLoadStatusMessage (nHandle, pszMsg, nMsgMaxLen, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pszMsg PSTR A buffer to the returned message describing the current load status.

nMsgMaxLen SHORT Size of the pszMsg.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The function returns the current load status into the user-supplied buffer. You can use the function to display the

status progress and result after calling GxFpgaLoad in Asynchronous mode.

Example

The following load an FPGA file in asynchronous mode and prints the progress:

SHORT nPercentage=0, nPriorPrecentage, nStatus, n;

CHAR szMsg[1024];

GxFpgaLoad(nHandle, GXFPGA_LOAD_TARGET_VOLATILE, “C:\\MyDesign.SVF”, GXFPGA_LOAD_MODE_ASYNC

&nStatus);

while (nStatus==0 && nPrecentage<100)

{ GxFpgaLoadStauts (nHandle, &nPercentage, &nStatus);

 GxFpgaLoadStautsMessage (nHandle, szMsg, sizeof szMsg, &n);

 if (nPrecentage!=nPriorPrecentage)

 printf(“Load Complete=%i, Status=%s”, nPrecentage, szMsg);

 nPriorPrecentage=nPrecentage;

 sleep(300);

}

printf(“Load Complete=%i, Status=%s”, nPrecentage, szMsg);

See Also

GxFpgaLoad, GxFpgaLoadStatus, GxFpgaGetErrorString

Function Reference 177

GxFpgaPanel

Purpose

Opens a virtual panel used to interactively control the GX3700.

Syntax

GxFpgaPanel (pnHandle, hwndParent, nMode, phwndPanel, pnStatus)

Parameters

Name Type Comments

pnHandle PSHORT Handle to a GX3700 board.

hwndParent HWND Panel parent window handle. A value of 0 sets the desktop as the parent window.

nMode SHORT The mode in which the panel main window is created. 0 for modeless window and 1

for modal window.

phwndPanel HWND Returned window handle for the panel.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The function is used to create the panel window. The panel window may be open as a modal or a modeless window

depending on the nMode parameters.

If the mode is set to modal dialog (nMode=1), the panel will disable the parent window (hwndParent) and the

function will return only after the window was closed by the user. In that case, the pnHandle may return the handle

created by the user using the panel Initialize dialog. This handle may be used when calling other GXFPGA

functions.

If a modeless dialog was created (nMode=0), the function returns immediately after creating the panel window

returning the window handle to the panel - phwndPanel. It is the responsibility of calling program to dispatch

windows messages to this window so that the window can respond to messages.

Example

The following example opens the panel in modal mode:

DWORD dwPanel;

SHORT nHandle=0, nStatus;

GxFpgaPanel(&nHandle, 0, 1, &dwPanel, &nStatus);

See Also

GxFpgaInitialize, GxFpgaGetErrorString

178 GX3700 User’s Guide

GxFpgaRead

Purpose

Reads the specified number of data elements from the User’s FPGA specified BAR memory.

Syntax

GxFpgaRead (nHandle, nMemoryBar, dwOffset, pvData, nElementSize, dwSize, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

nMemoryBar SHORT The board’s specified memory mapped address space BAR number, values are as

follows:

1. GXFPGA_MEMORY_BAR1: Memory mapped address space BAR 1.

2. GXFPGA_MEMORY_BAR2: Memory mapped address space BAR 2.

3. GXFPGA_MEMORY_BAR3: Memory mapped address space BAR 3.

4. GXFPGA_MEMORY_BAR4: Memory mapped address space BAR 4.

dwOffset DWORD The offset in the FPGA’s shared memory space in terms of bytes, must be aligned to 4

bytes address.

pvData PVOID A buffer that will be written to the FPGA’s shared memory. Buffer size must be as

indicated by the dwSize.

nElementSize SHORT The data Size in bytes.

dwSize DWORD The number of data elements to be read from the memory location.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example read 100 DWORD data points from BAR2 memory space at offset 8:

DWORD adwData[100];

GxFpgaRead (nHandle, GXFPGA_MEMORY_BAR2, 0x8, &adwData, 4, 100, &nStatus);

See Also

GxFpgaWrite, GxFpgaWriteRegister, GxFpgaGetErrorString

Function Reference 179

GxFpgaReadRegister

Purpose

Reads a 32-bit FPGA register.

Syntax

GxFpgaReadRegister (nHandle, dwOffset, pvData, dwSize, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

dwOffset DWORD The offset in the FPGA’s register space in terms of bytes, must be aligned to 4 bytes

address.

pvData PVOID A buffer that will contain the data read. Buffer size must be as indicated by the dwSize.

dwSize DWORD The number of bytes to be read from the memory location must be multiple of 4.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

This function will read one or more double words from the FPGA’s registers. The offset to be read from must be 4

byte aligned.

The Maximum value of dwOffset is 0x400.

Example

DWORD adwData[100];

GxFpgaReadRegister (nHandle, 0x8, &adwData, 400, &nStatus);

See Also

GxFpgaWriteRegister, GxFpgaGetErrorString

180 GX3700 User’s Guide

GxFpgaReset

Purpose

Resets the GX3700 interface FPGA and User FPGA to their default state.

Syntax

GxFpgaReset (nHandle, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example initializes and resets the GX3700 board:

GxFpgaInitialize (1, &nHandle, &nStatus);

GxFpgaReset (nHandle, &nStatus);

See Also

GxFpgaInitialize, GxFpgaGetErrorString

Function Reference 181

GxFpgaSetEvent

Purpose

Enables or disables an event handler.

Syntax

GxFpgaSetEvent (nHandle, nEventType, bEnable, procCallback, pvUserData, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

nEventType SHORT Event type. Use the constant GT_EVENT_INTERRUPT (1). No other value

is supported.

bEnable BOOL Enable (<>0) or disable (0) the event.

procCallback PROCEDURE Optional. User supplied procedure, called by the driver when an event

occurred.

pvUserData PVOID User data (pointer or value) that is passed to the callback procedure when an

event occurred.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

If NULL is passed in to the procCallback parameter, the only way to get notified that an event has occurred is to call

the GxFpgaWaitOnEvent function.

The procCallback should be defined as follows:

GxFpgaCallback (nHandle, nEventType,,pvUserData, pnStatus) : Long

Example

The following example output whether an event received during 1 second:

GxFpgaInitialize (1, &nHandle, &nStatus);

GxFpgaSetEvent(nHandle, GT_EVENT_INTERRUPT, TRUE, NULL, (PVOID)1, &nStatus);

! wait up to 1000 ms for the event

GxFpgaWaitOnEvent(nHandle, GT_EVENT_INTERRUPT, 1000, &nStatus);

if (nStatus==0) ! success event occurred

 printf(“event occurred”);

else

 printf(“No event occurred”);

GxFpgaSetEvent(nHandle, GT_EVENT_INTERRUPT, FALSE, NULL, (PVOID)1, &nStatus);

See Also

GxFpgaInitialize, GxFpgaGetErrorString, GxFpgaWaitOnEvent, GxFpgaDiscardEvents

182 GX3700 User’s Guide

GxFpgaUpgradeFirmware

Purpose

Upgrades the board’s firmware.

Syntax

GxFpgaUpgradeFirmware (nHandle, szFile, nMode, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

szFile PCSTR Path and file name of the firmware file. The firmware file extension is RPD.

nMode SHORT The upgrading firmware mode can be as follows:

0. GT_FIRMWARE_UPGRADE_MODE_SYNC: the function returns when upgrading

firmware is done or in case of an error.

1. GT_ FIRMWARE_UPGRADE_MODE_ASYNC: the function returns immediately.

The user can monitor the progress of upgrading firmware using the

GxFpgaUpgradeFirmwareStatus API.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

This function used in order to upgrade the board’s firmware. The firmware file can only be obtained by request from

Marvin Test Solutions.

Note: Loading an incorrect firmware file to the board can permanently damage the board.

Example

The following example loads Upgrades the board’s firmware using synchronous mode:

GxFpgaUpgradeFirmware (nHandle, “C:\\Gx3700Fw.rpd”, GT_LOAD_MODE_SYNC, &nStatus);

See Also

GxFpgaUpgradeFirmwareStatus, GxFpgaGetErrorString

Function Reference 183

GxFpgaUpgradeFirmwareStatus

Purpose

Monitor the firmware upgrade process.

Syntax

GxFpgaUpgradeFirmwareStatus (nHandle, pszMsg, nMsgMaxLen, pnProgress, pbIsDone, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pszMsg PSTR Buffer to contain the message from the firmware upgrade process.

nMsgMaxLen SHORT pszMsg buffer size.

pnProgress PSHORT Returns the firmware upgrades progress.

pbIsDone PBOOL Returned TRUE if the firmware upgrades are done.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

This function is used in order to monitor the firmware upgrade process whenever the user called

GxFpgaUpgradeFirmware API with GT_ FIRMWARE_UPGRADE_MODE_ASYNC mode.

Note: In order to prevent CPU over load if the function is called form within a loop, a delay of about 500mSec will

be activated if the time differences between consecutive calls are less than 500mSec.

Example

The following example loads Upgrades the board’s firmware using asynchronous mode, and ten monitors the

firmware upgrade process:

CHAR sz[256];

CHAR szMsg[256];

BOOL bIsDone=FALSE;

GxFpgaUpgradeFirmware (nHandle, “C:\\Gx3700Fw.rpd”, GT_UPGRADE_FIRMWARE_MODE_ASYNC, &nStatus);

if (nStatus<0)

{ GxFpgaGetErrorString(nStatus, sz, sizeof sz, &nStatus);

 printf(sz); // prints the error string returns

}

While (bIsDone==FALSE || nStatus<0)

{ GxFpgaUpgradeFirmwareStatus (nHandle, szMsg, sizeof szMsg, &nProgress, &bIsDone, &nStatus);

 printf(“Upgrade Progress %i”, nProgress);

 sleep(1000);

}

if (nStatus<0)

{ GxFpgaGetErrorString(nStatus, sz, sizeof sz, &nStatus);

 printf(sz); // prints the error string returns

}

See Also

GxFpgaUpgradeFirmware, GxFpgaGetErrorString

184 GX3700 User’s Guide

GxFpgaWaitOnEvent

Purpose

Waits until event received or timeout occurred.

Syntax

GxFpgaWaitOnEvent (nHandle, nEventType, lTimeout, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

nEventType SHORT Event type. Use the constant GT_EVENT_INTERRUPT (1). No other value

is supported.

lTimeout LONG Timeout to wait in mill seconds.

pnStatus PSHORT Returned status: 0 on success (event occurred), negative number on failure.

Comments

The function suspends the current thread until an event occurred or until the specified timeout expired.

Example

The following example output whether an event received during 1 second:

GxFpgaInitialize (1, &nHandle, &nStatus);

GxFpgaSetEvent(nHandle, GT_EVENT_INTERRUPT, TRUE, NULL, (PVOID)1, &nStatus);

! wait up to 1000 ms for the event

GxFpgaWaitOnEvent(nHandle, GT_EVENT_INTERRUPT, 1000, &nStatus);

if (nStatus==0) ! success event occurred

 printf(“event occurred”);

else if (nStatus==GT_EVENT_WAIT_TIMEOUT)

 printf(“No event occurred (timeout)”);

else

 printf(“Event error”);

GxFpgaSetEvent(nHandle, GT_EVENT_INTERRUPT, FALSE, NULL, (PVOID)1, &nStatus);

See Also

GxFpgaInitialize, GxFpgaGetErrorString, GxFpgaSetEvent, GxFpgaDiscardEvents

Function Reference 185

GxFpgaWrite

Purpose

Writes the specified number of data elements to the User’s FPGA specified BAR memory.

Syntax

GxFpgaWrite (nHandle, nMemoryBar, dwOffset, pvData, nElementSize, dwSize, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

nMemoryBar SHORT The board’s specified memory mapped address space BAR number, values are as

follows:

1. GXFPGA_MEMORY_BAR1: Memory mapped address space BAR 1.

2. GXFPGA_MEMORY_BAR2: Memory mapped address space BAR 2.

3. GXFPGA_MEMORY_BAR3: Memory mapped address space BAR 3.

4. GXFPGA_MEMORY_BAR4: Memory mapped address space BAR 4.

dwOffset DWORD The offset of User’s FPGA memory space in bytes.

pvData PVOID A buffer that will be written to the FPGA’s shared memory. Buffer size must be as

indicated by the dwSize.

nElementSize SHORT The data Size in bytes.

dwSize DWORD The number of data elements to write to the memory location.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example writes 100 DWORD to the User’s FPGA BAR1 memory to begin at offset 8:

DWORD adwData[100];

GxFpgaWrite (nHandle, GXFPGA_MEMORY_BAR1, 0x8, &adwData, 4, 100, &nStatus);

See Also

GxFpgaRead, GxFpgaWriteRegister, GxFpgaGetErrorString

186 GX3700 User’s Guide

GxFpgaWriteRegister

Purpose

Writes a buffer of 32 bit double words to the FPGA’s register space.

Syntax

GxFpgaWriteRegister (nHandle, dwOffset, pvData, dwSize, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

dwOffset DWORD The offset in the FPGA’s register space in terms of bytes, must be aligned to 4 bytes

address.

pvData PDWORD A buffer that will be written to the FPGA’s registers. Buffer size must be as indicated

by the dwSize.

dwSize DWORD The number of bytes to be written to the registers must be multiple of 4.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

This function will write one or more double words to the FPGA’s registers. The offset to be written to must be 4-

byte aligned

The Maximum value of dwOffset is 0x400.

Example

The following example writes 400 bytes to the card register space at offset 8:

DWORD adwData[100];

GxFpgaWriteRegister (nHandle, 0x8, &adwData, 400, &nStatus);

See Also

GxFpgaReadRegister, GxFpgaGetErrorString

Function Reference 187

Gx3788Initialize

Purpose

Initializes the driver for the board at the specified slot number. The function returns a handle that can be used with

other GX3788 function.

Syntax

Gx3788Initialize (nSlot, pnHandle, pnStatus)

Parameters

Name Type Comments

nSlot SHORT GX3788 board slot number on the PXI bus.

pnHandle PSHORT Returned handle for the board. The handle is set to zero on error and <> 0 on

success.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The Gx3788Initialize function verifies whether or not the GX3788 board exists in the specified PXI slot. The

function does not change any of the board settings. The function uses the HW driver to access and program the

board.

The Marvin Test Solutions HW device driver is installed with the driver and is the default device driver. The

function returns a handle that for use with other Counter functions to program the board. The function does not

change any of the board settings.

The specified PXI slot number is displayed by the PXI/PCI Explorer applet that can be opened from the Windows

Control Panel. You may also use the label on the chassis below the PXI slot where the board is installed. The

function accepts two types of slot numbers:

 A combination of chassis number (chassis # x 256) with the chassis slot number. For example, 0x105 (chassis 1

slot 5).

 Legacy nSlot as used by earlier versions of HW/VISA. The slot number contains no chassis number and can be

changed using the PXI/PCI Explorer applet (1-255).

The returned handle pnHandle is used to identify the specified board with other GX3788 functions.

Example

The following example initializes two GX3788 boards at slot 1 and 2.

SHORT nHandle1, nHandle2, nStatus;

Gx3788Initilize (1, &nHandle1, &nStatus);

Gx3788Initilize (2, &nHandle2, &nStatus);

if (nHandle1==0 || nHandle2==0)

{

 printf(“Unable to Initialize the board”)

return;

}

See Also

Gx3788InitializeVisa, Gx3788Reset, GxFpgaGetErrorString

188 GX3700 User’s Guide

Gx3788InitializeVisa

Purpose

Initializes the driver for the specified PXI slot using the default VISA provider.

Syntax

Gx3788InitializeVisa (szVisaResource, pnHandle, pnStatus)

Parameters

Name Type Comments

szVisaResource LPCTSTR String identifying the location of the specified board in order to establish a

session.

pnHandle PSHORT Returned Handle (session identifier) that can be used to call any other operations

of that resource

pnStatus PSHORT Returned status: 0 on success, 1 on failure.

Comments

The Gx3788InitializeVisa opens a VISA session to the specified resource. The function uses the default VISA

provider configured in your system to access the board. You must ensure that the default VISA provider support

PXI/PCI devices and that the board is visible in the VISA resource manager before calling this function.

The first argument szVisaResource is a string that is displayed by the VISA resource manager such as NI

Measurement and Automation (NI_MAX). It is also displayed by Marvin Test Solutions PXI/PCI Explorer as shown

in the prior figure. The VISA resource string can be specified in several ways as follows:

 Using chassis, slot, for example: “PXI0::CHASSIS1::SLOT5”

 Using the PCI Bus/Device combination, for example: “PXI9::13::INSTR” (bus 9, device 9).

 Using alias, for example: “FPGA1”. Use the PXI/PCI Explorer to set the device alias.

The function returns a board handle (session identifier) that can be used to call any other operations of that resource.

The session is opened with VI_TMO_IMMEDIATE and VI_NO_LOCK VISA attributes. On terminating the

application the driver automatically invokes viClose() terminating the session.

Example

The following example initializes a GX3788 boards at PXI bus 5 and device 11.

SHORT nHandle, nStatus;

Gx3788InitializeVisa (“PXI5::11::INSTR”, &nHandle, &nStatus);

if (nHandle==0)

{

 printf("Unable to Initialize the board")

 return;

}

See Also

Gx3788Initialize, Gx3788Reset, GxFpgaGetErrorString

Function Reference 189

Gx3788Reset

Purpose

Resets the GX3788 to their default state.

Syntax

Gx3788Reset (nHandle, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

This function will reset the following settings:

 Digital Port Data to 0x0

 Digital Port Direction to 0x0 (input)

 Analoug Output Channel Voltages to 0.0 V

Example

The following example initializes and resets the GX3788 board:

Gx3788Initialize (1, &nHandle, &nStatus);

Gx3788Reset (nHandle, &nStatus);

See Also

Gx3788Initialize, GxFpgaGetErrorString

190 GX3700 User’s Guide

Gx3788GetBoardSummary

Purpose

Returns the board information.

Syntax

Gx3788GetBoardSummary (nHandle, pszSummary, nMaxLen, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pszSummary PSTR Buffer to contain the returned board info (null terminated) string.

nMaxLen SHORT pszSummary buffer size.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The function returns the board information of the Gx3788 which includes the FPGA version, and serial number.

Example

The following example returns the board information:

CHAR szSummary[1024];

Gx3788GetBoardSummary (nHandle, szSummary, 1024, &nStatus);

See Also

Gx3788Initialize, GxFpgaGetErrorString, Gx3788GetCalibrationInfo

Function Reference 191

Gx3788GetCalibrationInfo

Purpose

Returns the calibration information.

Syntax

Gx3788GetCalibrationInfo (nHandle, pszCalibrationInfo, nInfoMaxLen, pnDaysUntilExpire, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle to a GX3788 board

pszCalibrationInfo PSTR Buffer to contain the returned board’s calibration information (null terminated)

string.

nInfoMaxLen SHORT Size of the buffer to contain the calibration information string.

pnDaysUntilExpire PSHORT Returns the number of days until or from expiration, if number is > 0 then

calibration is current otherwise past due.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The returned board’s calibration information has the following fields:

Model: model number, e.g. “GX3788”

Serial Number: serial number, e.g. 37880016

Control Number: Marvin Test Solutions control number, e.g. “BB-BA-00”

Production Calibration Date: Wed Oct 24 12:30:25 2010

Calibration Date: Wed Oct 24 12:31:58 2010

Recommended Interval: 1 year

Next Calibration Date: Fri Oct 24 12:31:58 2011

Status: calibration status can be either “Expired” followed by the number of days past expiration or “Current”

followed by number of days until expire.

Calibration License: can be either “Installed” with the calibration license number or “Not Installed”.

 Example

The following example returns the calibration information:

CHAR szInfo[2048];

SHORT nDays, nStatus;

Gx3788GetCalibrationInfo (nHandle, sz, 2048, &nDays, &nStatus);

See Also

Gx3788Initialize, GxFpgaGetErrorString, Gx3788GetBoardSummary

192 GX3700 User’s Guide

Gx3788AnalogInGetGroundSource

Purpose

Returns the analog input ground source

Syntax

Gx3788AnalogInGetGroundSource (nHandle, nChannels, pnGroundSource, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nChannels SHORT Select analog in channel group to query:

0. GX3788_ANALOG_IN_CHANNELS_0_7: Channel group 0 to 7

1. GX3788_ANALOG_IN_CHANNELS_8_15: Channel group 8 ot 15

pnGroundSource PSHORT Returns the analog input Ground Source:

0. GX3788_ANALOG_IN_DIGITAL_GND: Digital Ground

1. GX3788_ANALOG_IN_ANALOG_GND: Analog Ground

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example gets the ground source of analog channels 0 through 7:

Gx3788AnalogInGetGroundSource (nHandle, GX3788_ANALOG_IN_CHANNELS_0_7, &nGroundSource, &nStatus);

See Also

Gx3788AnalogInSetGroundSource, GxFpgaGetErrorString

Function Reference 193

Gx3788AnalogInMeasureChannel

Purpose

Measures the voltage on a particular analog channel

Syntax

Gx3788AnalogInMeasureChannel (nHandle, nMode, nChannel, nVoltageRange, pdVoltage, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nMode SHORT Select analog in channel group to query:

0. GX3788_ANALOG_IN_DIFFERENTIAL

1. GX3788_ANALOG_IN_SINGLE_ENDED

nChannel SHORT Selects the analog input channel to measure

Use the following constants when using single ended mode:

0. GX3788_ANALOG_IN_0

1. GX3788_ANALOG_IN_1

2. GX3788_ANALOG_IN_2

3. GX3788_ANALOG_IN_3

4. GX3788_ANALOG_IN_4

5. GX3788_ANALOG_IN_5

6. GX3788_ANALOG_IN_6

7. GX3788_ANALOG_IN_7

8. GX3788_ANALOG_IN_8

9. GX3788_ANALOG_IN_9

10. GX3788_ANALOG_IN_10

11. GX3788_ANALOG_IN_11

12. GX3788_ANALOG_IN_12

13. GX3788_ANALOG_IN_13

14. GX3788_ANALOG_IN_14

15. GX3788_ANALOG_IN_15

Use the following constants when using differential mode:

0. GX3788_ANALOG_IN_DIFF_0_AND_1

1. GX3788_ANALOG_IN_DIFF_2_AND_3

2. GX3788_ANALOG_IN_DIFF_4_AND_5

3. GX3788_ANALOG_IN_DIFF_6_AND_7

4. GX3788_ANALOG_IN_DIFF_8_AND_9

5. GX3788_ANALOG_IN_DIFF_10_AND_11

6. GX3788_ANALOG_IN_DIFF_12_AND_13

7. GX3788_ANALOG_IN_DIFF_14_AND_15

nVoltageRange SHORT Returns the analog input Ground Source:

0. GX3788_ANALOG_IN_RANGE_NEG_13p60V_TO_POS_13p60V

1. GX3788_ANALOG_IN_RANGE_NEG_10p24V_TO_POS_10p24V

2. GX3788_ANALOG_IN_RANGE_NEG_5p12V_TO_POS_5p12V

3. GX3788_ANALOG_IN_RANGE_NEG_2p56V_TO_POS_2p56V

4. GX3788_ANALOG_IN_RANGE_NEG_1p28V_TO_POS_1p28V

194 GX3700 User’s Guide

5. GX3788_ANALOG_IN_RANGE_NEG_0p64V_TO_POS_0p64V

pdVoltage PDOUBLE Returns the measured voltage

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

Each analog in channel has the ability to be measured for voltage. The detection circuit can be set to use one of 7

voltage ranges (nVoltageRange parameter). The measurement can also be taken as a single ended input or a

differential pair of inputs (nMode parameter). When the differential mode is used, a pair of analog input channels

are used together to provide the differential input. The differential pairs are defined as channels 0 and 1, channels 2

and 3, etc. For example, if the GX3788_ANALOG_IN_DIFFERENTIAL constant is passed to the nMode and the

GX3788_ANALOG_IN_DIFF_4_AND_5 contant is passed in to the nChannel parameter, the differential pair will

be channels 4 and 5.

Example

The following example gets the ground source of analog channels 0 through 7:

Gx3788AnalogInMeasureChannel (nHandle, GX3788_ANALOG_IN_SINGLE_ENDED, 0,

GX3788_ANALOG_IN_RANGE_NEG_10p24V_TO_POS_10p24V, &dVoltage, &nStatus);

printf("Analog In Channel 0 measurement = %f Voltage", dVoltage);

See Also

Gx3788Initialize, Gx3788Reset, GxFpgaGetErrorString

Function Reference 195

Gx3788AnalogInScanGetChannelListIndex

Purpose

Return scan channel list entry

Syntax

Gx3788AnalogInScanGetChannelListIndex (nHandle, dwScanChannelIndex, pdwChannel, pnRange, pnMode,

pbIsLastChannel, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

dwScanChannelIndex DWORD Index of entry in channel list to return (0-63)

pdwChannel PDWORD Returns the channel number stored at the selected index in the scan channel

list (0-15)

pnRange PSHORT Returns the range of the input channel stored at the selected index in the scan

channel list

0. GX3788_ANALOG_IN_RANGE_NEG_13p60V_TO_POS_13p60V

1. GX3788_ANALOG_IN_RANGE_NEG_10p24V_TO_POS_10p24V

2. GX3788_ANALOG_IN_RANGE_NEG_5p12V_TO_POS_5p12V

3. GX3788_ANALOG_IN_RANGE_NEG_2p56V_TO_POS_2p56V

4. GX3788_ANALOG_IN_RANGE_NEG_1p28V_TO_POS_1p28V

5. GX3788_ANALOG_IN_RANGE_NEG_0p64V_TO_POS_0p64V

pnMode PSHORT Returns the mode of the input channel stored at the selected index in the scan

channel list

0. GX3788_ANALOG_IN_DIFFERENTIAL

1. GX3788_ANALOG_IN_SINGLE_ENDED

pbIsLastChannel PBOOL Returns the last channel flag stored at the selected index in the scan channel

list

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The analog in scan operation requires that a channel list be set up prior to initiating the operation. This function

allows the user to create a channel list, including the analog in channel number, voltage range, and mode. The

channel list is then used by the sequencer to acquire samples (one per channel that is defined in the channel list) for

each sample clock period. Note that the same channel number can be repeated in a channel list, resulting in mulitple

samples being taken on the same channel within a sample clock period. Use the bIsLastChannel parameter to

indicate which channel list index should be considered by the sequencer to be the last.

Example

The following example gets the analog in scan channel list at index 4:

Gx3788AnalogInScanSetChannelListIndex (nHandle, 4, &nRange, &nMode, &bIsLastChannel, &nStatus);

See Also

Gx3788AnalogInScanSetChannelListIndex, Gx3788AnalogInScanSetCount, Gx3788AnalogInScanGetCount ,

GxFpgaGetErrorString

196 GX3700 User’s Guide

Gx3788AnalogInScanGetCount

Purpose

Returns the analog input measurement count

Syntax

Gx3788AnalogInScanGetCount (nHandle, pdwMeasureCount, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pdwMeasureCount PDWORD Returns the number of voltage measurements to take during a scan operation

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The scan count is the number of sample clock periods that will be executed. During each clock period, the sequencer

will capture samples for each channel defined in the channel list. The channel list can be modified by calling

Gx3788AnalogInScanSetChannelListIndex

Example

The following example gets the analog in scan count:

Gx3788AnalogInScanGetCount (nHandle, &dwMeasurementCount, &nStatus);

See Also

Gx3788AnalogInScanSetCount, GxFpgaGetErrorString

Function Reference 197

Gx3788AnalogInScanGetLastRunCount

Purpose

Returns the analog input measurement count from the last scan operation

Syntax

Gx3788AnalogInScanGetLastRunCount (nHandle, pdwMeasureCount, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pdwMeasureCount PDWORD Returns the number of voltage measurements taken during the last scan

operation

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example gets the analog in scan count of the last scan operation:

Gx3788AnalogInScanGetLastRunCount (nHandle, &dwMeasurementCount, &nStatus);

See Also

Gx3788AnalogInScanSetCount, Gx3788AnalogInScanGetCount, GxFpgaGetErrorString

198 GX3700 User’s Guide

Gx3788AnalogInScanGetSampleRate

Purpose

Returns the analog input measurement sample rate

Syntax

Gx3788AnalogInScanGetSampleRate (nHandle, pdSampleRate, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pdSampleRate PDOUBLE Returns the sample rate of the analog in scan operation in Hz

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example gets the analog in scan rate:

Gx3788AnalogInScanGetSampleRate (nHandle, &dSampleRate, &nStatus);

See Also

Gx3788AnalogInScanSetSampleRate, GxFpgaGetErrorString

Function Reference 199

Gx3788AnalogInScanIsRunning

Purpose

Returns the analog input measurement sample rate

Syntax

Gx3788AnalogInScanIsRunning (nHandle, pbIsRunning, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pbIsRunning PBOOL Return TRUE if an analog in scan operation is in progress and FALSE if it is

not

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example checks if a scan operation is in progress:

Gx3788AnalogInScanIsRunning (nHandle, &bRunning, &nStatus);

if (bRunning)

 printf("Analog In Scan in progress...");

else

 printf("Analog In Scan not running");

See Also

Gx3788AnalogInScanStart, GxFpgaGetErrorString

200 GX3700 User’s Guide

Gx3788AnalogInScanReadMemoryRawData

Purpose

Read recorded voltage samples from the last scan operation

Syntax

Gx3788AnalogInScanReadMemoryRawData (nHandle, dwMemoryStart, dwCount, pawData, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

dwMemoryStart DWORD The starting offset in memory for the scan sample memory read operation

dwCount DWORD The number of samples to read from memory

pawData PWORD Return the samples in the form of raw samples within an array

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The sample memory contains the captured voltage samples after a scan operation has completed. This function

returns the samples in their raw 16-bit form. Each set of sample(s) (acquired from one or more channels as defined

in the channel list), are stored sequentially in memory. For example, if the channel list defines channels 6, 8, 3, and

4, and the sample count was set to 3, then the sample memory will contain voltage samples in the following order:

6,8,3,4...6,8,3,4...6,8,3,4.

Example

The following example reads 10 samples from memory start at offset 0:

WORD awData[10];

Gx3788AnalogInScanReadMemoryRawData (nHandle, 0, 10, awData, &nStatus);

See Also

Gx3788AnalogInScanSetChannelListIndex, Gx3788AnalogInScanSetCount, Gx3788AnalogInScanStart

GxFpgaGetErrorString

Function Reference 201

Gx3788AnalogInScanReadMemoryVoltages

Purpose

Read recorded voltage samples from the last scan operation

Syntax

Gx3788AnalogInScanReadMemoryVoltages (nHandle, dwMemoryStart, dwCount, padData, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

dwMemoryStart DWORD The starting offset in memory for the scan sample memory read operation

dwCount DWORD The number of samples to read from memory

padData PDOUBLE Return the samples in the form of voltages within an array

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The sample memory contains the captured voltage samples after a scan operation has completed. This function

returns the samples in the form of voltages. Each set of sample(s) (acquired from one or more channels as defined in

the channel list), are stored sequentially in memory. For example, if the channel list defines channels 6, 8, 3, and 4,

and the sample count was set to 3, then the sample memory will contain voltage samples in the following order:

6,8,3,4...6,8,3,4...6,8,3,4.

Example

The following example reads 10 samples from memory start at offset 0:

DOUBLE adData[10];

Gx3788AnalogInScanReadMemoryVoltages (nHandle, 0, 10, adData, &nStatus);

See Also

Gx3788AnalogInScanSetChannelListIndex, Gx3788AnalogInScanSetCount, Gx3788AnalogInScanStart

GxFpgaGetErrorString

202 GX3700 User’s Guide

Gx3788AnalogInScanSetChannelListIndex

Purpose

Modify scan channel list

Syntax

Gx3788AnalogInScanSetChannelListIndex (nHandle, dwScanChannelIndex, dwChannel, nRange, nMode,

bIsLastChannel, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

dwScanChannelIndex DWORD Index in channel list to modify (0-63)

dwChannel DWORD Channel number to add to the scan channel list (0-15)

nRange SHORT Sets the range of the input channel at the selected index in the scan channel

list

0. GX3788_ANALOG_IN_RANGE_NEG_13p60V_TO_POS_13p60V

1. GX3788_ANALOG_IN_RANGE_NEG_10p24V_TO_POS_10p24V

2. GX3788_ANALOG_IN_RANGE_NEG_5p12V_TO_POS_5p12V

3. GX3788_ANALOG_IN_RANGE_NEG_2p56V_TO_POS_2p56V

4. GX3788_ANALOG_IN_RANGE_NEG_1p28V_TO_POS_1p28V

5. GX3788_ANALOG_IN_RANGE_NEG_0p64V_TO_POS_0p64V

nMode SHORT Sets the mode of the input channel at the selected index in the scan channel

list

0. GX3788_ANALOG_IN_DIFFERENTIAL

1. GX3788_ANALOG_IN_SINGLE_ENDED

bIsLastChannel BOOL Marks the channel as the last in the channel list at the selected channel index

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The analog in scan operation requires that a channel list be set up prior to initiating the operation. This function

allows the user to create a channel list, including the analog in channel number, voltage range, and mode. The

channel list is then used by the sequencer to acquire samples (one per channel that is defined in the channel list) for

each sample clock period. Note that the same channel number can be repeated in a channel list, resulting in mulitple

samples being taken on the same channel within a sample clock period. Use the bIsLastChannel parameter to

indicate which channel list index should be considered by the sequencer to be the last.

Example

The following example sets the analog in scan channel list at index 4 to analog in channel 5 with a range of +/-

13.60V, and single ended mode:

Gx3788AnalogInScanSetChannelListIndex (nHandle, 4,

GX3788_ANALOG_IN_RANGE_NEG_13p60V_TO_POS_13p60V, GX3788_ANALOG_IN_SINGLE_ENDED, FALSE,

&nStatus);

See Also

Gx3788AnalogInScanGetChannelListIndex, Gx3788AnalogInScanSetCount, GxFpgaGetErrorString

Function Reference 203

Gx3788AnalogInScanSetCount

Purpose

Sets the analog input measurement count

Syntax

Gx3788AnalogInScanSetCount (nHandle, dwMeasureCount, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

dwMeasureCount DWORD Sets the number of voltage measurements to take during a scan operation

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The scan count is the number of sample clock periods that will be executed. During each clock period, the sequencer

will capture samples for each channel defined in the channel list. The channel list can be modified by calling

Gx3788AnalogInScanSetChannelListIndex

Example

The following example sets the analog in scan count to 5:

Gx3788AnalogInScanSetCount (nHandle, 5, &nStatus);

See Also

Gx3788AnalogInScanGetCount, GxFpgaGetErrorString

204 GX3700 User’s Guide

Gx3788AnalogInScanSetSampleRate

Purpose

Sets the analog input measurement sample rate

Syntax

Gx3788AnalogInScanSetSampleRate (nHandle, dSampleRate, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

dSampleRate DOUBLE Sets the sample rate of the analog in scan operation in Hz

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example sets the analog in scan rate to 100 Hz:

Gx3788AnalogInScanSetSamppleRate (nHandle, 100, &nStatus);

See Also

Gx3788AnalogInScanGetSampleRate, GxFpgaGetErrorString

Function Reference 205

Gx3788AnalogInScanStart

Purpose

Starts an analog in scan operation

Syntax

Gx3788AnalogInScanStart (nHandle, nScanMode, dwMemoryStart, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nScanMode SHORT Sets the scan operation mode:

0. GX3788_ANALOG_IN_DIFFERENTIAL: Diffrential mode

1. GX3788_ANALOG_IN_SINGLE_ENDED: Single ended mode

dwMemoryStart DWORD Sets the address in sample memory to start from

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example starts an analog in scan operation using single ended mode, starting at memory address 0:

Gx3788AnalogInScanStart (nHandle, GX3788_ANALOG_IN_SINGLE_ENDED, 0, &nStatus);

See Also

Gx3788AnalogInScanSetSampleRate, Gx3788AnalogInScanGetSampleRate, GxFpgaGetErrorString

206 GX3700 User’s Guide

Gx3788AnalogInSetGroundSource

Purpose

Sets the analog input ground source

Syntax

Gx3788AnalogInSetGroundSource (nHandle, nChannels, nGroundSource, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nChannels SHORT Select analog in channel group to query:

0. GX3788_ANALOG_IN_CHANNELS_0_7: Channel group 0 to 7

1. GX3788_ANALOG_IN_CHANNELS_8_15: Channel group 8 ot 15

nGroundSource SHORT Analog input Ground Source:

0. GX3788_ANALOG_IN_DIGITAL_GND: Digital Ground

1. GX3788_ANALOG_IN_ANALOG_GND: Analog Ground

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example sets the ground source of analog channels 0 through 7 to digital ground:

Gx3788AnalogInSetGroundSource (nHandle, GX3788_ANALOG_IN_CHANNELS_0_7,

GX3788_ANALOG_IN_DIGITAL_GND, &nStatus);

See Also

Gx3788AnalogInGetGroundSource, GxFpgaGetErrorString

Function Reference 207

Gx3788AnalogOutGetOutputState

Purpose

Returns the analog output channel state

Syntax

Gx3788AnalogOutGetOutputState (nHandle, pbOutputEnable, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pbOutputEnable PBOOL Returns the analog output state.

0. GX3788_ANALOG_OUT_ENABLE: All the analog ouput channels are

enabled (driving voltage).

1. GX3788_ANALOG_OUT_DISABLE: All the analog output channels are

disabled (not driving voltage).

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example gets the analog output channel state:

Gx3788AnalogOutGetOutputState (nHandle, &bAnalogOutputState, &nStatus);

See Also

Gx3788AnalogOutSetOutputState, Gx3788AnalogOutSetVoltage, Gx3788AnalogOutGetVoltage,

GxFpgaGetErrorString

208 GX3700 User’s Guide

Gx3788AnalogOutGetVoltage

Purpose

Returns the analog output channel voltage

Syntax

Gx3788AnalogOutGetVoltage (nHandle, nChannel, pdVoltage, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nChannel SHORT Selects analog output channel to set (0-7)

pdVoltage PDOUBLE Returned voltage setting of the selected channel

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example gets the analog output channel 4 voltage:

Gx3788AnalogOutGetVoltage (nHandle, 4, &dVoltage, &nStatus);

See Also

Gx3788AnalogOutSetVoltage, GxFpgaGetErrorString

Function Reference 209

Gx3788AnalogOutReset

Purpose

Sets all the analog output channels to default settings

Syntax

Gx3788AnalogOutReset (nHandle, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

This function sets all analog output channels to 0 volts and disables all analog output channels.

Example

The following example resets analog output channels:

Gx3788AnalogOutReset (nHandle, &nStatus);

See Also

Gx3788AnalogOutSetVoltage, Gx3788AnalogOutGetVoltage, GxFpgaGetErrorString

210 GX3700 User’s Guide

Gx3788AnalogOutSetOutputState

Purpose

Sets the analog output channel state

Syntax

Gx3788AnalogOutSetOutputState (nHandle, bOutputEnable, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

bOutputEnable BOOL Sets the analog output state.

0. GX3788_ANALOG_OUT_ENABLE: All the analog ouput channels are

enabled (driving voltage).

1. GX3788_ANALOG_OUT_DISABLE: All the analog output channels are

disabled (not driving voltage).

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example enables all the analog output channels:

Gx3788AnalogOutSetOutputState (nHandle, GX3788_ANALOG_OUT_ENABLE, &nStatus);

See Also

Gx3788AnalogOutGetOutputState, Gx3788AnalogOutSetVoltage, Gx3788AnalogOutGetVoltage,

GxFpgaGetErrorString

Function Reference 211

Gx3788AnalogOutSetVoltage

Purpose

Sets the analog output channel voltage

Syntax

Gx3788AnalogOutSetVoltage (nHandle, nChannel, dVoltage, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nChannel SHORT Selects analog output channel to set (0-7)

dVoltage DOUBLE Voltage to set the analog output channel

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example sets the analog output channel 4 to 6.5 volts:

Gx3788AnalogOutSetVoltage (nHandle, 4, 6.5, &nStatus);

See Also

Gx3788AnalogOutGetVoltage, GxFpgaGetErrorString

212 GX3700 User’s Guide

Gx3788PioGetPort

Purpose

Returns the output states of a selected digital port

Syntax

Gx3788PioGetPort (nHandle, nPort, pdwValue, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to get:

0. GX3788_PIO_PORT0: Digital Port 0

1. GX3788_PIO_PORT1: Digital Port 1

2. GX3788_PIO_PORT2: Digital Port 2

pdwValue PDWORD Returns the output states of the selected digital port, each bit corresponds to a

channel, when the channel is in high state - 1 will be returned for that channel/bit,

low state – 0 will returned

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example gets the digital port 0 output states:

Gx3788PioGetPort (nHandle, GX3788_PIO_PORT0, &dwValue, &nStatus);

See Also

Gx3788PioSetPort, GxFpgaGetErrorString

Function Reference 213

Gx3788PioGetPortChannel

Purpose

Returns the output state of a selected digital port

Syntax

Gx3788PioGetPortChannel (nHandle, nPort, nChannel, pbValue, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to get:

0. GX3788_PIO_PORT0: Digital Port 0

1. GX3788_PIO_PORT1: Digital Port 1

2. GX3788_PIO_PORT2: Digital Port 2

nChannel SHORT Selects the channel within the selected port to query (0-31)

pbValue PBOOL Returns the output state of the selected digital channel

0. FALSE: Digital low level

1. TRUE: Digital high level

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example gets the digital port 0, channel 15 output state:

Gx3788PioGetPortChannel (nHandle, GX3788_PIO_PORT0, 15, &pbValue, &nStatus);

See Also

Gx3788PioSetPortChannel, Gx3788PioGetPortChannel, Gx3788PioSetPort, GxFpgaGetErrorString

214 GX3700 User’s Guide

Gx3788PioGetPortChannelDirection

Purpose

Returns the digital channel direction state

Syntax

Gx3788PioGetPortChannelDirection (nHandle, nPort, nChannel, pbValue, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to get:

0. GX3788_PIO_PORT0: Digital Port 0

1. GX3788_PIO_PORT1: Digital Port 1

2. GX3788_PIO_PORT2: Digital Port 2

nChannel SHORT Selects the channel within the selected port to set (0-31)

pbValue PBOOL Returns the direction setting of a selected digital channel

0. FALSE: Digital channel is an input

1. TRUE: Digital channel is an output

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example gets the digital port 0, channel 15 direction setting:

Gx3788PioGetPortChannelDirection (nHandle, GX3788_PIO_PORT0, 15, &bDirection, &nStatus);

See Also

Gx3788PioSetPortChannelDirection, Gx3788PioSetPortChannel, Gx3788PioGetPortChannel,

Gx3788PioSetPort, Gx3788PioGetPort, GxFpgaGetErrorString

Function Reference 215

Gx3788PioGetPortDirection

Purpose

Returns the direction (input or output) settings of a selected digital port

Syntax

Gx3788PioGetPortDirection (nHandle, nPort, pdwDirection, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to get:

0. GX3788_PIO_PORT0: Digital Port 0

1. GX3788_PIO_PORT1: Digital Port 1

2. GX3788_PIO_PORT2: Digital Port 2

pdwDirection PDWORD Returns the direction settings of the selected digital port

0. GX3788_PIO_PORT_DIRECTION_IN: Digital channel is an input

1. GX3788_PIO_PORT_DIRECTION_OUT: Digital channel is an output

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example gets the digital port 0 direction settings:

Gx3788PioGetPortDirection (nHandle, GX3788_PIO_PORT0, &dwDirection, &nStatus);

See Also

Gx3788PioSetPortDirection, Gx3788PioSetPort, Gx3788PioGetPort, Gx3788PioSetPortChannel,

Gx3788PioGetPortChannel, GxFpgaGetErrorString

216 GX3700 User’s Guide

Gx3788PioReadPort

Purpose

Reads the input state of 32 channels in the specified digital port

Syntax

Gx3788PioReadPort (nHandle, nPort, pdwValue, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to read from:

0. GX3788_PIO_PORT0: Digital Port 0

1. GX3788_PIO_PORT1: Digital Port 1

2. GX3788_PIO_PORT2: Digital Port 2

pdwValue PDWORD Returns the read input states of the selected digital port

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example reads the digital port 0 input states:

Gx3788PioReadPort (nHandle, GX3788_PIO_PORT0, &dwValue, &nStatus);

See Also

Gx3788PioGetPort, Gx3788PioSetPort, GxFpgaGetErrorString

Function Reference 217

Gx3788PioReadPortChannel

Purpose

Reads the input state of the specified digital port channel

Syntax

Gx3788PioReadPortChannel (nHandle, nPort, nChannel, pbValue, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to read from:

0. GX3788_PIO_PORT0: Digital Port 0

1. GX3788_PIO_PORT1: Digital Port 1

2. GX3788_PIO_PORT2: Digital Port 2

nChannel SHORT Selects the channel within the selected port to read from (0-31)

pbValue PBOOL Returns the read input states of the selected digital channel

0. FALSE: Digital low level

1. TRUE: Digital high level

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example reads the digital port 0, channel 15 input state:

Gx3788PioReadPortChannel (nHandle, GX3788_PIO_PORT0, 15, &bValue, &nStatus);

See Also

Gx3788PioReadPort, Gx3788PioGetPort, Gx3788PioSetPort, Gx3788PioGetPortChannel,

Gx3788PioSetPortChannel, GxFpgaGetErrorString

218 GX3700 User’s Guide

Gx3788PioResetPort

Purpose

Sets the selected digital port to default

Syntax

Gx3788PioResetPort (nHandle, nPort, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to set:

0. GX3788_PIO_PORT0: Digital Port 0

1. GX3788_PIO_PORT1: Digital Port 1

2. GX3788_PIO_PORT2: Digital Port 2

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

This function sets all channel output values to 0 and all channel directions to input within the selected port.

Example

The following example resets digital port 0:

Gx3788PioResetPort (nHandle, GX3788_PIO_PORT0, &nStatus);

See Also

Gx3788PioResetPortChannel, Gx3788PioSetPort, Gx3788PioGetPort, Gx3788PioSetPortChannel,

Gx3788PioGetPortChannel, GxFpgaGetErrorString

Function Reference 219

Gx3788PioResetPortChannel

Purpose

Sets the selected digital channel to default

Syntax

Gx3788PioResetPortChannel (nHandle, nPort, nChannel, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to reset:

0. GX3788_PIO_PORT0: Digital Port 0

1. GX3788_PIO_PORT1: Digital Port 1

2. GX3788_PIO_PORT2: Digital Port 2

nChannel SHORT Selects the channel within the selected port to reset (0-31)

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

This function the selected channel output value to 0 and direction to input.

Example

The following example resets digital port 0, channel 15:

Gx3788PioResetPortChannel (nHandle, GX3788_PIO_PORT0, 15, &nStatus);

See Also

Gx3788Reset, Gx3788PioSetPortChannel, Gx3788PioGetPortChannel, Gx3788PioSetPort,

Gx3788PioGetPort, GxFpgaGetErrorString

220 GX3700 User’s Guide

Gx3788PioSetPort

Purpose

Sets the output states of a selected digital port

Syntax

Gx3788PioSetPort (nHandle, nPort, dwValue, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to set:

0. GX3788_PIO_PORT0: Digital Port 0

1. GX3788_PIO_PORT1: Digital Port 1

2. GX3788_PIO_PORT2: Digital Port 2

dwValue DWORD Sets the output states of the selected digital port, each bit represents a channel

within the port, bit 0, channel 1, when the bit is high the state will be high and 0

for low.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example sets the digital port 0 output states to 0xF:

Gx3788PioSetPort (nHandle, GX3788_PIO_PORT0, 0xF, &nStatus);

See Also

Gx3788PioGetPort, Gx3788PioSetPortChannel, Gx3788PioGetPortChannel, GxFpgaGetErrorString

Function Reference 221

Gx3788PioSetPortChannel

Purpose

Sets the output state of a selected digital port

Syntax

Gx3788PioSetPortChannel (nHandle, nPort, nChannel, bValue, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to set:

0. GX3788_PIO_PORT0: Digital Port 0

1. GX3788_PIO_PORT1: Digital Port 1

2. GX3788_PIO_PORT2: Digital Port 2

nChannel SHORT Selects the channel within the selected port to set (0-31)

bValue PBOOL Sets the output state of a selected digital channel

0. FALSE: Digital low level

1. TRUE: Digital high level

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example sets the digital port 0, channel 15, output state to high:

Gx3788PioSetPortChannel (nHandle, GX3788_PIO_PORT0, 15, TRUE, &nStatus);

See Also

Gx3788PioGetPortChannel, Gx3788PioSetPort, Gx3788PioGetPort, GxFpgaGetErrorString

222 GX3700 User’s Guide

Gx3788PioSetPortChannelDirection

Purpose

Sets the output state of a selected digital port

Syntax

Gx3788PioSetPortChannelDirection (nHandle, nPort, nChannel, bValue, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to set:

0. GX3788_PIO_PORT0: Digital Port 0

1. GX3788_PIO_PORT1: Digital Port 1

2. GX3788_PIO_PORT2: Digital Port 2

nChannel SHORT Selects the channel within the selected port to set (0-31)

bValue BOOL Sets the direction setting of a selected digital channel

0. FALSE: Digital channel is an input

1. TRUE: Digital channel is an output

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example sets the digital port 0, channel 15 direction to output:

Gx3788PioSetPortChannelDirection (nHandle, GX3788_PIO_PORT0, 15, TRUE, &nStatus);

See Also

Gx3788PioGetPortChannelDirection, Gx3788PioSetPortChannel, Gx3788PioGetPortChannel,

Gx3788PioSetPort, Gx3788PioGetPort, GxFpgaGetErrorString

Function Reference 223

Gx3788PioSetPortDirection

Purpose

Sets the direction (input or output) settings of a selected digital port

Syntax

Gx3788PioSetPortDirection (nHandle, nPort, dwDirection, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to set:

0. GX3788_PIO_PORT0: Digital Port 0

1. GX3788_PIO_PORT1: Digital Port 1

2. GX3788_PIO_PORT2: Digital Port 2

dwDirection DWORD Sets the direction settings of the selected digital port

0. GX3788_PIO_PORT_DIRECTION_IN: Digital channel is an input

1. GX3788_PIO_PORT_DIRECTION_OUT: Digital channel is an output

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example sets channels 0 to 4 of digital port 0 to output and channels 5 to 31 to input:

Gx3788PioSetPortDirection (nHandle, GX3788_PIO_PORT0, 0x1F, &nStatus);

See Also

Gx3788PioGetPortDirection, Gx3788PioSetPort, Gx3788PioGetPort, Gx3788PioSetPortChannel,

Gx3788PioGetPortChannel, GxFpgaGetErrorString

224 GX3700 User’s Guide

Gx3788TriggerGetOutputLevel

Purpose

Returns the output level of the trigger output line

Syntax

Gx3788TriggerGetOutputLevel (nHandle, pnTriggerLevel, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pnTriggerLevel PSHORT Returns the output trigger level:

0. GX3788_TRIGGER_LEVEL_LOW: Output Trigger level is set to Low

1. GX3788_TRIGGER_LEVEL_HIGH: Output Trigger leve is set to High

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example gets the trigger output level:

Gx3788TriggerSetOuputLevel (nHandle, &nTriggerLevel, &nStatus);

See Also

Gx3788TriggerSetOutpuLevel, Gx3788TriggerReadInputLevel, GxFpgaGetErrorString

Function Reference 225

Gx3788TriggerReadInputLevel

Purpose

Reads the level of the trigger input line

Syntax

Gx3788TriggerReadInputLevel (nHandle, pnTriggerLevel, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pnTriggerLevel PSHORT Returns the input trigger level:

0. GX3788_TRIGGER_LEVEL_LOW: Input Trigger level reads back Low

1. GX3788_TRIGGER_LEVEL_HIGH: Input Trigger level reads back High

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example reads the input trigger level:

Gx3788TriggerReadInputLevel (nHandle, &nTriggerLevel, &nStatus);

See Also

Gx3788TriggerGetOutpuLevel, Gx3788TriggerSetOutpuLevel, GxFpgaGetErrorString

226 GX3700 User’s Guide

Gx3788TriggerSetOutputLevel

Purpose

Sets the output level of the trigger output line

Syntax

Gx3788TriggerSetOutputLevel (nHandle, nTriggerLevel, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nTriggerLevel SHORT Sets the output trigger level:

0. GX3788_TRIGGER_LEVEL_LOW: Output Trigger level is set to Low

1. GX3788_TRIGGER_LEVEL_HIGH: Output Trigger leve is set to High

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example sets the trigger output level to high:

Gx3788TriggerSetOuputLevel (nHandle, GX3788_TRIGGER_LEVEL_HIGH, &nStatus);

See Also

Gx3788TriggerGetOutpuLevel, Gx3788TriggerReadInputLevel, GxFpgaGetErrorString

Index 227

Index

.

.NET ... ii

A

Adder Circuit ... 61

Adder Circuit with PCI Bus Connection ... 62, 94, 120

Adder Components .. 53

Adder Wizard .. 59, 60

Altera ... 3, 47, 81, 103

Applications ... 4

Architecture ... 1

Architecture

ATEasy .. ii, 25, 43, 44

B

Board Description .. 1, 5

Board Handle ... 46

Board Installation .. 27

Borland .. 43

Borland-Delphi .. 43

Bus Wiring Tool .. 57

C

C/C++ .. 43

Calibration ... 191

Components Used 53, 87, 109

Connector .. 30, 35

Connectors 29, 30, 35, 141, 149

Corrupt files ... 24

Creating the FPGA Design 66, 67, 95, 121

Cyclone III ... 48, 82, 104

D

D Flip Flops ... 58, 93, 119

Decoder Properties .. 56

Delphi ... ii, 43

Design .. 55, 89

Design File... 53, 87, 109

Device Selection .. 48, 82, 104

Directories ... 25

Distributing the Driver ... 46

DMA FIFO Interface Timing 12

Driver

Directory .. 25

Files ... 25

Dynamic Digital Sequencer Circuit 70

E

Error-Handling .. 46

ESD ... 27

Examples ... 46

Expansion Board Connector 142

Expansion Board Design Guide 133

Expansion Boards .. 133

F

Features.. 3

Function Reference .. 155

G

Getting Started ... 23

GX3700Schem.tcl...................................... 51, 85, 107

GX3701 ... 148, 152

GX3701 Specification 148, 151, 153

Gx3788AnalogInGetGroundSource 192

Gx3788AnalogInMeasureChannel 193

Gx3788AnalogInScanGetChannelListIndex 195

Gx3788AnalogInScanGetCount 196

Gx3788AnalogInScanGetLastRunCount 197

Gx3788AnalogInScanGetSampleRate................... 198

Gx3788AnalogInScanIsRunning 199

Gx3788AnalogInScanReadMemoryRawData 200

Gx3788AnalogInScanReadMemoryVoltages........ 201

Gx3788AnalogInScanSetChannelListIndex 202

Gx3788AnalogInScanSetCount 203

228 GX3700 User’s Guide

Gx3788AnalogInScanSetSampleRate 204

Gx3788AnalogInScanStart 205

Gx3788AnalogInSetGroundSource 206

Gx3788AnalogOutGetOutputState 207

Gx3788AnalogOutGetVoltage 208

Gx3788AnalogOutReset .. 209

Gx3788AnalogOutSetOutputState......................... 210

Gx3788AnalogOutSetVoltage 211

Gx3788GetBoardSummary 190

Gx3788GetCalibrationInfo 191

Gx3788Initialize .. 187

Gx3788InitializeVisa ... 188

Gx3788PioGetPort... 212

Gx3788PioGetPortChannel 213

Gx3788PioGetPortChannelDirection 214

Gx3788PioGetPortDirection.................................. 215

Gx3788PioReadPort .. 216

Gx3788PioReadPortChannel 217

Gx3788PioResetPort ... 218

Gx3788PioResetPortChannel 219

Gx3788PioSetPort ... 220

Gx3788PioSetPortChannel 221

Gx3788PioSetPortChannelDirection 222

Gx3788PioSetPortDirection 223

Gx3788Reset ... 189

Gx3788TriggerGetOutputLevel 224

Gx3788TriggerReadInputLevel 225

Gx3788TriggerSetOutputLevel 226

GXFPGA ... 1, 24

Driver-Description ... 43

Header-file ... 43

GXFPGA Driver .. 43

GXFPGA driver functions 45

GXFPGA Functions .. 156

GXFPGA Software .. 25

GXFPGA.bas ... 43

GXFPGA.dll .. 44

GXFPGA.EXE .. 24

GXFPGA.h .. 43

GXFPGA.lib .. 43

GXFPGA.llb .. 44

GXFPGA.pas ... 43

GXFPGA.vb .. 43

GXFPGA64.DLL .. 43

GXFPGA64.lib .. 43

GXFPGABC.lib ... 43

GxFpgaDiscardEvent ... 159

GxFpgaDiscardEvents ... 156

GxFpgaDmaFreeMemory 157, 160

GxFpgaDmaGetTransferStatus 157, 161

GxFpgaDmaTransfer 157, 162

GxFpgaGetBoardSummary 156, 157, 158, 163

GxFpgaGetBoardType 156, 164

GxFpgaGetDriverSummary 46, 156, 166

GxFpgaGetEepromSummary 156, 165

GxFpgaGetErrorString 46, 155, 156, 167, 169

GxFpgaGetExpansionBoardID 156, 170

GxFpgaInitialize 16, 26, 45, 46, 155, 156, 171

GxFpgaInitializeVisa 16, 26, 45, 46, 155, 156, 172

GxFpgaLoad .. 156, 173

GxFpgaLoadFromEeprom 156, 174

GxFpgaLoadStatus .. 156, 175

GxFpgaLoadStatusMessage 156, 176

GxFpgaPanel ... 156, 157, 177

GxFpgaRead .. 156

GxFpgaReadRegister 156, 179

GxFpgaReset ... 156, 157, 180

GxFpgaSetEvent .. 156, 181

GxFpgaUpgradeFirmware 157, 182

GxFpgaUpgradeFirmwareStatus 157, 183

GxFpgaWaitOnEvent 156, 184

GxFpgaWrite ... 156, 178, 185

GxFpgaWriteRegister 156, 186

GX3700 User’s Guide 229

H

Handle ... 27, 28, 45, 46

HW .. 24, 25, 29, 43, 46

I

If You Need Help ...i

Installation ... 23, 24

Precautions-Static-Electricity 27

Procedures-All-Boards 27, 29

Installation Directories .. 25

Interfaces ... 23

Inter-FPGA Bus Interface Timing 11

Introduction ... 3

J

J1 ... 30, 31, 35, 149, 150, 151

TTL I/O Connector 149, 150, 151

J2 ... 30, 32, 35, 36

J3 ... 30, 33, 35, 37

J4 ... 30, 34, 35, 38

JP2 ... 39

JP3 ... 39

JP4 ... 39

JP5 ... 39

Jumpers .. 39

L

LabVIEW .. 44

LabVIEW/Real Time ... 44

Linux ... 44

M

Mechanical Guide .. 138

MegaWizard Plug-In ... 55

N

nHandle ... 44

O

OnError .. 44

Open Schematic view Dialog Box 54, 88, 110

Overview ... 3

P

Packing List ... 23

Panel 15, 17, 18, 19, 21, 24, 45, 177

Panel About Page... 21

Part / Model Number ... 23

Pascal ... 43

PCI ... 25

PCI Address Decoder Circuit 57, 91, 118

Pin Assignment .. 49, 83, 105

PLL Wizard Dialog Box .. 68

Plug & Play.. 29

programming ... 43

Programming

Borland-Delphi .. 43

Error-Handling... 46

Visual ... 43

Programming Examples .. 46

Programming the GX3700 43

PXI 5, 7, 24, 26, 27, 28, 29, 45

PXI System .. 26

PXI/PCI Explorer .. 16, 26, 45, 46, 171, 172, 187, 188

PXIeSYS.INI ... 16

PXISYS.INI ... 16

Q

Quartus 47, 48, 49, 81, 82, 83, 103, 104, 105

R

RAM Wizard Dialog Box .. 69

README.TXT ... 25

Removing a Board ... 29

Reset .. 46

RPD 71, 73, 96, 98, 122, 124

S

Safety and Handling ...i

Schematic entry project 51, 85, 107

Schematic view .. 54, 88, 110

Setup .. 24, 25

Setup Maintenance .. 24

230 GX3700 User’s Guide

Setup-and-Installation .. 23

Slot ... 16, 24, 27, 29, 45

Software ... 24

Specifications .. 1, 13

Specifications

SVF 71, 73, 78, 96, 98, 100, 122, 124, 129

Symbol Insert Dialog Box 55, 89, 90, 91, 111, 112,

113, 114, 115, 116, 117, 118

Symbol Properties...................................... 63, 94, 120

System

Directory .. 25

System Requirements .. 24

T

Task Flow .. 52, 86, 108

TCL script .. 49, 83, 105

Testing the Design 75, 79, 101, 126, 130

TTL I/O Connector 149, 150, 151

TTL I/O Connector - Default mode (J1 pins 27 and

28 Logic low) 149, 150, 151

V

Virtual Panel 15, 16, 17, 18, 19, 21, 24, 177

Initialize Dialog ... 15, 16

VISA 16, 25, 26, 45, 46, 156, 157, 171, 172, 187, 188

Visual ... 43

Visual Basic .. ii, 43

Visual Basic .NET ... 43

Visual C++ ... ii, 43

W

Warranty ...i

	GX3700, GXFPGA User’s Guide
	Safety and Handling
	Warranty
	If You Need Help
	Disclaimer
	Copyright
	Trademarks

	Table of Contents
	Chapter 1 - Introduction
	Manual Scope and Organization
	Manual Scope
	Manual Organization

	Conventions Used in this Manual

	Chapter 2 - Overview
	Introduction
	Features
	Applications
	Board Description
	Architecture
	Memory
	PXI/PXIe and PC Connections
	Inter-FPGA Bus Interface Timing
	DMA FIFO Interface Timing

	Specifications
	Digital I/O Channel
	Expansion Board Interface
	Timing Source
	User FPGA
	Power
	Environmental

	Virtual Panel Description
	Virtual Panel Initialize Dialog
	Virtual Panel Setup Page
	Virtual Panel I/O Page
	Virtual Panel DAQ Page (GX3788)
	Virtual Panel About Page

	Chapter 3 - Installation and Connections
	Getting Started
	Interfaces and Accessories
	Packing List
	Unpacking and Inspection
	System Requirements

	Installation of the GXFPGA Software
	Setup Maintenance Program
	Overview of the GXFPGA Software
	Installation Folders
	Configuring Your PXI System using the PXI/PCI Explorer
	Board Installation
	Before you Begin
	Electric Static Discharge (ESD) Precautions
	Installing a Board
	Plug & Play Driver Installation
	Removing a Board

	GX3701 Connectors
	GX3701 J1 – Flex I/O Connector
	GX3701 J2 – Flex I/O Connector
	GX3701 J3 – Flex I/O Connector
	GX3701 J4 – Flex I/O Connector

	GX3788 Connectors
	GX3788 J1 – Flex I/O Bank A Connector
	GX3788 J2 – Flex I/O Bank D Connector
	GX3788 J3 – Flex I/O Bank B Connector
	GX3788 J4 – Flex I/O Bank C Connector

	Jumpers

	Chapter 4 - Programming the Board
	The GXFPGA Driver
	Programming Using C/C++ Tools
	Programming Using Visual Basic and Visual Basic .NET
	Programming Using Pascal/Delphi
	Programming GXFPGA Boards Using ATEasy®
	Programming Using LabVIEW and LabVIEW/Real Time
	Using and Programming under Linux
	Using the GXFPGA driver functions
	Initialization, HW Slot Numbers and VISA Resource
	Board Handle
	Reset
	Error Handling
	Driver Version

	Programming Examples
	Distributing the Driver

	Chapter 5 - GXFPGA Schematic Entry Tutorial
	Introduction
	Downloading Altera Design FPGA Design Tools
	Create New Project
	Device Selection
	Pin Assignment Setup
	Pin Assignments Table
	Schematic entry project

	Creating Design File with Schematic Entry
	Phase 1: Creating the FPGA design - 32 bit Full Adder
	Components Used
	Schematic view
	Design

	Phase 2: Creating the FPGA Design - 2 to 1 Clock Mux
	Components Used
	Design

	Phase 3: Creating the FPGA Design - 32 bit Dynamic Digital Pattern Sequencer
	Components Used
	Design

	Configure Project to Output SVF and RPD Files
	Compile an Example Project and Build RPD and SVF Files
	Simulating the Design
	Load Gx3700 with SVF File
	Testing the Design
	Adder Testing
	Clock Mux Testing
	Digital Sequencer Testing

	Chapter 6 - GXFPGA Verilog Tutorial
	Introduction
	Downloading Altera Design FPGA Design Tools
	Create New Project
	Device Selection
	Pin Assignment Setup
	Pin Assignments Table
	Verilog project

	Creating Design File with Verilog
	Phase 1: Creating the FPGA design - 32 bit Full Adder
	Components Used
	Top-level Verilog file
	Top-level inputs and outputs

	Phase 2: Creating the FPGA Design - 2 to 1 Clock Mux
	Design

	Configure Project to Output SVF and RPD Files
	Compile an Example Project and Build RPD and SVF Files
	Load Gx3700 with SVF File
	Testing the Design
	Adder Testing
	Clock Mux Testing

	Chapter 7 - GXFPGA VHDL Tutorial
	Introduction
	Downloading Altera Design FPGA Design Tools
	Create New Project
	Device Selection
	Pin Assignment Setup
	Pin Assignments Table
	Schematic entry project

	Creating Design File with VHDL
	Phase 1: Creating the FPGA design - 32 bit Full Adder
	Components Used
	Top-level VHDL file
	Top-level inputs and outputs

	Phase 2: Creating the FPGA Design - 2 to 1 Clock Mux
	Design

	Configure Project to Output SVF and RPD Files
	Compile an Example Project and Build RPD and SVF Files
	Simulating the Design
	Load Gx3700 with SVF File
	Testing the Design
	Adder Testing
	Clock Mux Testing

	Chapter 8 - GX3700 Expansion Boards
	Expansion Board Design Guide
	Mechanical Layout Guide
	Expansion Board Connectors and Electrical Requirements
	P1 Expansion Board Connector Pin Assignment
	GX3701 Expansion Board
	GX3701 Programming
	GX3701 Expansion Board Specification

	GX3702 Expansion Board
	J1 – Flex I/O Bank A Connector
	J2 – Flex I/O Bank B Connector
	J3 – Flex I/O Bank C Connector
	J4 – Flex I/O Bank D Connector
	GX3702 Expansion Board Specification

	GX3788 Expansion Board
	GX3788 Programming
	GX3788 Digital and Analog Multi-Function Expansion Board Specification

	Chapter 9 - Function Reference
	Introduction
	GXFPGA Functions
	GxFpgaDiscardEvents
	GxFpgaDmaFreeMemory
	GxFpgaDmaGetTransferStatus
	GxFpgaDmaTransfer
	GxFpgaGetBoardSummary
	GxFpgaGetBoardType
	GxFpgaGetEepromSummary
	GxFpgaGetDriverSummary
	GxFpgaGetErrorString
	GxFpgaGetExpansionBoardID
	GxFpgaInitialize
	GxFpgaInitializeVisa
	GxFpgaLoad
	GxFpgaLoadFromEeprom
	GxFpgaLoadStatus
	GxFpgaLoadStatusMessage
	GxFpgaPanel
	GxFpgaRead
	GxFpgaReadRegister
	GxFpgaReset
	GxFpgaSetEvent
	GxFpgaUpgradeFirmware
	GxFpgaUpgradeFirmwareStatus
	GxFpgaWaitOnEvent
	GxFpgaWrite
	GxFpgaWriteRegister
	Gx3788Initialize
	Gx3788InitializeVisa
	Gx3788Reset
	Gx3788GetBoardSummary
	Gx3788GetCalibrationInfo
	Gx3788AnalogInGetGroundSource
	Gx3788AnalogInMeasureChannel
	Gx3788AnalogInScanGetChannelListIndex
	Gx3788AnalogInScanGetCount
	Gx3788AnalogInScanGetLastRunCount
	Gx3788AnalogInScanGetSampleRate
	Gx3788AnalogInScanIsRunning
	Gx3788AnalogInScanReadMemoryRawData
	Gx3788AnalogInScanReadMemoryVoltages
	Gx3788AnalogInScanSetChannelListIndex
	Gx3788AnalogInScanSetCount
	Gx3788AnalogInScanSetSampleRate
	Gx3788AnalogInScanStart
	Gx3788AnalogInSetGroundSource
	Gx3788AnalogOutGetOutputState
	Gx3788AnalogOutGetVoltage
	Gx3788AnalogOutReset
	Gx3788AnalogOutSetOutputState
	Gx3788AnalogOutSetVoltage
	Gx3788PioGetPort
	Gx3788PioGetPortChannel
	Gx3788PioGetPortChannelDirection
	Gx3788PioGetPortDirection
	Gx3788PioReadPort
	Gx3788PioReadPortChannel
	Gx3788PioResetPort
	Gx3788PioResetPortChannel
	Gx3788PioSetPort
	Gx3788PioSetPortChannel
	Gx3788PioSetPortChannelDirection
	Gx3788PioSetPortDirection
	Gx3788TriggerGetOutputLevel
	Gx3788TriggerReadInputLevel
	Gx3788TriggerSetOutputLevel

	Index

