GX3700/GX3700e
GX3701/GX3702/GX3788

User Configurable FPGA and Expansion Boards
GXFPGA Software

User’s Guide

Last Updated: December 16, 2016

>

~~ MARVIN TEST
G SOLUTIONS

GX3700 User's Guide i

Safety and Handling

Each product shipped by Marvin Test Solutions is carefully inspected and tested prior to shipping. The shipping box
provides protection during shipment, and can be used for storage of both the hardware and the software when they
are not in use.

The circuit boards are extremely delicate and require care in handling and installation. Do not remove the boards
from their protective plastic coverings or from the shipping box until you are ready to install the boards into your
computer.

If a board is removed from the computer for any reason, be sure to store it in its original shipping box. Do not store
boards on top of workbenches or other areas where they might be susceptible to damage or exposure to strong
electromagnetic or electrostatic fields. Store circuit boards in protective anti-electrostatic wrapping and away from
electromagnetic fields.

Be sure to make a single copy of the software diskette for installation. Store the original diskette in a safe place
away from electromagnetic or electrostatic fields. Return compact disks (CD) to their protective case or sleeve and
store in the original shipping box or other suitable location.

Warranty

Marvin Test Solutions products are warranted against defects in materials and workmanship for a period of 12
months. Software products and accessories are warranted for 3 months. Unless covered by software support or
maintenance agreement. Marvin Test Solutions shall repair or replace (at its discretion) any defective product during
the stated warranty period. The software warranty includes any revisions or new versions released during the
warranty period. Revisions and new versions may be covered by a software support agreement. If you need to return
a board, please contact Marvin Test Solutions Customer Technical Services department via
http://www.marvintest.com/magic the Marvin Test Solutions on-line support system.

If You Need Help

Visit our web site at http://www.marvintest.com for more information about Marvin Test Solutions products,
services and support options. Our web site contains sections describing support options and application notes, as
well as a download area for downloading patches, example, patches and new or revised instrument drivers. To
submit a support issue including suggestion, bug report or question please use the following link:
http://www.marvintest.com/magic

You can also use Marvin Test Solutions technical support phone line (949) 263-2222. This service is available
between 7:30 AM and 5:30 PM Pacific Standard Time.

Disclaimer

In no event, shall Marvin Test Solutions or any of its representatives be liable for any consequential damages
whatsoever (including unlimited damages for loss of business profits, business interruption, loss of business

information, or any other losses) arising out of the use of or inability to use this product, even if Marvin Test
Solutions has been advised of the possibility for such damages.

Copyright

Copyright © 2003-2016, by Marvin Test Solutions, Inc. All rights reserved. No part of this document can be
reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written consent of Marvin Test Solutions.

http://www.marvintest.com/magic
http://www.marvintest.com/
http://www.marvintest.com/magic

il GX3700 User’s Guide

Trademarks

ATEasy®, CalEasy, DIOEasy®, DtifEasy, WaveEasy Marvin Test Solutions (prior
name is Geotest - Marvin
Test Systems Inc.)

Quartus Altera Corporation

C++ Builder, Delphi Embarcadero Technologies
Inc.

LabVIEW, LabWindows™/CVI National Instruments

Microsoft Developer Studio, Microsoft Visual C++, Microsoft Visual Basic, .NET, Microsoft Corporation

and Windows

All other trademarks are the property of their respective owners.

GX3700 User’s Guide i

Table of Contents

T Y14V 1o A - 1o 11T TP i
LA U UL S i
L TV AN F=T T I T o SRR i
DISCIAIMET ...t E R b e R R R e R R R R R Rt R s i
@070/ 1o 1 S i
THAABIMAIKS ...ttt bbbt bbb bbb bbb £ bbb £ e bbbt bbbt e bt e bbb ii
TADIE OF CONTENTS ...ttt s et se e st e e e bt e ss e e e am et e s nn e e s ne e e nnreeennnes iii
(O{gF=T o] =T MR 0} o Yo [o3 o 1o P PSR 1
Manual SCOPe AN OFJANIZATIONc.viuiriiiitiieeeet ettt bbb bbbt b bbbt b e enes 1
IVIBNUBL SCOPE. ...ttt ettt bbbt b bbbt b et b e e b e e bbb e bt e bbbt e b et e bt e b b e st et b e bt et n s 1
MENUBT OFGANIZATION.......c.eitiieeicie it et bbbt b et b e bbb bbbttt b et e bt bbbt et e 1
Conventions Used in thiS IMBNUEL ... 2
CRAPTEE 2 - OVEIVIBW ...ieiiiii ittt ettt e ettt oa bt e s a b bt e e e a bttt e s aa kbt e e e et b e e e e e anb e e e e ebbe e e e ennbeeeeennnee 3
LYoo 8T 1 o] o FO TSP TP UR PP PRPRPPRPRTITIN 3
FBALUIES ...ttt bR 3
N o] o] [ToF: 4] 1SS 4
Lo ToTs 1o LTSt] o] o SR TRSSSOR 5
AATCINITECTUIE ...ttt b bbb bbbt b oAb bbb bbb b £ e bt e b e bbbt bbbt be b ens 7
IVIBIMOTY ..o h e h bbb b e s h e e e R e e R e R e R bR e R e R et e e nr e 8
PXI/PXIE @Nd PC CONMNECLIONSveviitiieiiiteieeieite ettt sttt sttt b et b et b et b e bbbt b ettt bbbt st 10
INter-FPGA BUS INtErfaCe TIMING.....c.eiiiieiiitiiiiir bbbt sb et n e 11
DMA FIFO INEITACE TIMINGtitiiiiiiteiieiiite et bbb bbbt b ettt bbb 12

Yo L= ol o= Ui o] SRS 13
Digital 1/O ChanNEl..... .ottt ettt et et e e e st e s te e steesbeenteenseassesreete e teesteeneeanees 13
EXPanSion BOArd INTEITACEccviiieii ettt e s te e ste e e e sb e eseesba e te e teesaenraennees 13
THMING SOUICEvvitieitieitee ettt et s b et e st e e s e e s taesteesteeste e teeaseeaeeeaseese e beesteesteasaeaseesReesaeeabeenteenbeenseansenssenraen 13
USEE FPGA e bbb e e 14
POWVET <. b e e 14
ENVIFONMENTAL ...ttt bbb bbb bbbt b e b e et b b et bbbt et e 14
VrtUAL PANEl DESCIIPLIONc.eitiieiiite ettt e b e e b e et b et b e et b ettt e b bt be st 15
Virtual Panel INItialize DIAI0Qc.couerieiiieieiie ettt ettt b ettt se ettt sbe e 16
VUL PANEI SELUD PAGE ... ecveieeeieite et e b et b e st b ettt b ettt st ettt be st 17
VAFTUAL PANEI /O PAGE ...ttt et e b e e b e bbbt b e bttt b ettt ebe bbbt bt st e 18
Virtual Panel DAQ Page (GXB788).....cuiiieiierieieite ettt sttt sttt sttt sttt b ettt s b et st ben et e 19

ViIrtUal PAnel ADOUL PAgE.... ...ttt bbb bbbt bt et e b e sb e be s bt bt e b e et e e e nbe e e 21

iV GX3700 User's Guide

Chapter 3 - Installation and CONNECHIONScciiiiiiiiiiiii e e e e e re e e e e e e e e aaes 23
LC = L] 1o] U (=T SRS 23
INEEITACES BNTG ACCESSOIIESv.vveirteeeer ettt ettt r et r et R et r et R bRt R et n et et n e n s 23

PACKING LIS ...ttt bbb bbb bbb b e b e bt bbbt bbbt bbb r et b 23
UNPacking @nd INSPECTIONc.tiuiiieiite et b bbb bbb bbb bbb et 23
SYSTEIM REGUITEIMENTS ...ttt ettt ettt sttt b et b e bbb st e bt s e e e bt eb e s e eb e sb e s e eb e sb e s e eb e s b e s e ebenb e s e ebenb e e abenre e 24
Installation of the GXFPGA SOTIWAIEcviiiiiiie bbbttt 24
Setup MaINTENANCE PROGIAIMoiviiiitiitiiietiit ettt ettt e stk b etk bbb bt bt et e bt b e bt e bt bbbt nbe e 24
Overview Of the GXFPGA SOTIWATEciiiiiiiii bbbt nne e 25
INSEAITALION FOIEIS ...t E et r et r et 25
Configuring Your PXI System using the PXI/PCI EXPIOFEr........cccvcviieiiieieiese et se et 26
BOArd INSTAHALION.........cviiiiiiti i nr et r et r e s 27
Ty (T (=TT V I =TT 1| o SRS 27
Electric Static Discharge (ESD) PreCaAULIONSueiviieiiiiieiiesee st sie e ee e seeste e snaesnsessaeste e teenesnaesnees 27
LR e U [T T T = T 1 RSSO 27
Plug & Play Driver INSTAHAIIONc.ciiiiiiiiieeie et bbbt be e 29
REMOVING 8 BOAIT ...ttt bbbt b e bbb bbb bbbt e bt bbbt et 29
GXB70L CONNECEOIS ...ttt ettt b bbbt bt bbb h e s e st bR e bt e b e eb e s e e e e b e et e bt e bt e b e e s e e nennenrs 30
GX3701 J1 — FIEX 1/O CONNEBCLON ...ttt sttt sttt etttk bbb bbb et nb e et abe e ebenre e 31
GX3T701 J2 — FIEX 1/O CONNEBCLON ...ttt sttt sttt ettt b ettt sb ekt sb et eb ettt sb e et nbe e ebenbe e 32
GX3701 J3 = FIEX 1/O CONNEBCION ..ttt b ettt bbbt b e bbbt et abe et b 33
GX3701 J4 — FIEX 1/O CONNECION ...ttt b e bt e n e r e eb e nn e b nn e enenn e 34
GX3788 CONMNECIONS ...ttt bbb bbbt bbb bbb e e e e b e b s b e b e b et e b et se e srers 35
GX3788 J1 — Flex 1/O Bank A CONMNECTONc.crveeiririeiiirirreeste sttt sr e sne e nesn e renn e snenne e 35
GX3788 J2 — Flex 1/O Bank D CONMNECTONcoveeiririeiiirerieieste ettt resn e nn e snenne e 36
GX3788 J3 — Flex 1/O Bank B CONNEBCIONcueiveiiririeiiireseeeste sttt nn e snenne e 37
GX3788 J4 — Flex 1/O BanK C CONNEBCIONc.ccuiieiiitiiieiiite ettt sttt sttt bbb sr e sbesre e 38
JUIMIPBES <.ttt b e s E e e E e e e et e et e ae e e R e e e Rt e e R e e Rt e e e s et R e e R nR e nr e e nn e e e e e nneenre e 39

Chapter 4 - Programming the BOArdccooooiiiiii i 43
THE GXFPGA DIIVEL ...ttt ettt bttt bbb e bt bt e bt bbbt b e e bt e b b e bt e b et e bt eb et e bt be st e bttt 43
Programming USING C/CH+ TOOISc.uiuiiiirieiitiieeet ettt b bbbt 43
Programming Using Visual Basic and Visual BasiC .NETcccoiiiiiiiiiiiiniee s 43
Programming UsSiNg PaSCal/DelPNi.........ouiiiiii ettt ettt nbe b 43
Programming GXFPGA B0ards USING ATEASY®.......ccccciiriiiriiiiiiiiisiete ettt ss s bbb 44
Programming Using LabVIEW and LabVIEW/REAI TIMEcciiiiiiiiiiieie s 44
Using and Programming UNGEE LINUX........cc.coiieieiiaeaieienese ettt sse e e seeseesbesbesbesseeneesneneessesnens 44

Using the GXFPGA driVEr TUNCHIONSoui ittt e b e sttt ne bt sne s 45

GX3700 User’s Guide V

Initialization, HW Slot NUMDErs and VISA RESOUICEccvrvireririrreriinieerisreeesreie s 45
BOArd HANAIE ...t R et R et 46
RSB .. s 46
EITOr HANGTING ..ottt bbb bbb bbbt bbb bbbt e bbbt b 46
DIIVEE VEISTON. ...ttt ettt bt b bbb bbb bbb b bt e bt e e bt b b e bR bbbt e bt e b b et et b et et r e 46
Programming EXAMPIES.oovciiiieiiteit ettt ekttt bbb bbbt bbbt bbb bbbt 46
DISEIDULING TNE DIV ...ttt b bbbt bbb bbb bbb bt et e et b e 46
Chapter 5 - GXFPGA Schematic ENtry TULOIAl.........oiviiiiiiiiiiiiiieee e r e sirane e e e e 47
IEFOTUCTION ...t bbb bbb bbb b bt e bt e bbb e bbb e bt e bt e bt et et ettt e e bt b 47
Downloading Altera Design FPGA DESIgN TOOIScvcveieiiieieiisesieieesie ettt e et sre e ste e ne e eaensense e 47
(@8 =T L NN LT o T OSSP 48
DEVICE SEIECTIONeeieeeeieite ettt Rt E et b Rt r et b e r e r e r e r e 48
eI NSt o] =T 0L =] (1 o SRR 49
Pin ASSIGNMENTS TADIE......cciiiieiieie ettt ettt e e st este e steesbeeneeeneeaseesneete e teeseenneeanees 49
Yo gt gL ol 1 Y o] 0] <o SRR 51
Creating Design File With SChEemMAtiC ENIY ..ot 53
Phase 1: Creating the FPGA design - 32 Dit FUIT AQAEN ..ot 53
COMPONENES USEA ...ttt ettt bbbt b et b e bt eb e sb et eb e nb e e eb e s b e s e ekt st e st et e nbe e ebenbe e 53
SCNEMALIC VIBW ...ttt bbb bbb bbbt bbbt s b st bt s b e e eb e s b st ekt nb e st ebeabe e ebenbe e 54
(D=2 T o OO OO OO OSSOSO T TP T PSP R PRSP 55
Phase 2: Creating the FPGA DeSign - 2 10 1 CIOCK IMUX......ccueviiriiiiiiiiiciiieieesie st 66
(@70 44T oTo]gT=T 1 T U LY=o TSR 66
1= oo USROS 66
Phase 3: Creating the FPGA Design - 32 bit Dynamic Digital Pattern SEqUENCErccevveeieeienierie e, 67
(00 44T oTo] g =] 1 ST U K=o TSR 67
1= o o SRS 67
Configure Project to OUtpUt SVF and RPD FilESooiiiiiiiiieeees e 71
Compile an Example Project and Build RPD and SVF FIlES.........ccccoiiiiiiiiniiiee e 73
STMUIBEING ThE DBSIGN ... ettt et bbb s bbb bbbttt b et b e b b e bt st e e 75
L0oad GX3700 WIth SV FIlEottt bbbt bt eb e bt et sb e ebenne e 78
TESHING thE DIESTON ...ttt b etk b ettt b e e bt bbbt bt b e b e e bt b e e e bt eb e e e sttt e bt et 79
N o T g =TSy T o TSSO 79

(08 o Tod 1@ 1Y 11D G =T 1o o PO OSSR URRT 79
Digital SEQUENCET TESTING ... e veitiiteitt ettt bttt e bbbt bt bt ebe e st et et sbesbesbeebeer e et e eenaenees 80
Chapter 6 - GXFPGA VErilog TULOTIAL......cciiuiiiiiiiie ettt et 81
IEFOTUCTION ...t bbbt h et h bbb bbbt h bbbt e bbbt bt bt e bbbt bt r e 81

Downloading Altera Design FPGA DESigN TOOIScciiiiiiiiieitirieeiieie ettt st see 81

Vi GX3700 User’s Guide

(@8- o NN T o 1o OSSP 82
DIBVICE SEIBCTION ...ttt Rt E et R et b e Rt r e n et 82
TN S o] g LT a LA (U oIS 83
PN ASSIGNMENTS TADIE......e et b e bbbt b e bbbttt b et 83
WEITIOG PIOJECT ...ttt bbbt bt bbb bbb bbbt bbbttt b et b s 85
Creating Design File WIth VErilOgcooiiiiiiiiiiee bbb 87
Phase 1: Creating the FPGA design - 32 DIt FUIT ALc.oiiiiiiiiiee s 87
COMPONENES USEU ...ttt b et b et b bbbt e et b e b st b e s b st bt sb b eb e s b et eb e nb et et e nbe e et e nr e 87
TOP-1EVEI WVEITIOQ THlE ...t b bbbt bbbt 88
TOP-1EVEl INPULS AN QULPULSeeeieiiesiecie sttt st e et e b e e st e s besbeeneese et e teseesbesreeneereenseeeneens 89
Phase 2: Creating the FPGA DeSign - 210 1 CIOCK MUX......c.ciiiiiiiiiiicieesie e 95
12 o USSR 95
Configure Project to OUtpUt SVF and RPD FIlESccooiiiiieiee sttt s 96
Compile an Example Project and Build RPD and SVF FIlES.........cccoviiiiiiii e 98
Load GX3700 WIth SV FIlE ...t b bbbttt e e e 100
TESHING thE DIESTON ...ttt bbbt bbb bbb bbb b st b b stk b et b bt e bt bt e bt bbbt et 101
AAAAET TESEING. ¢+ttt ettt bbb bbb bR bbb s bbbt bbbt bbbttt b bt b e 101
CIOCK IMUX TESTING ...ttt ettt bbbttt b bbbt bbb bbb b b e bt e bt b e b e bt bt et b e e bt et r e 102
Chapter 7 - GXFPGA VHDL TULOTIALcoc oo 103
IEFOTUCTION ...tttk bbb bbb b s bbbt bbb bbb bbbttt b e 103
Downloading Altera Design FPGA DeSigN TOOIScciiiiiiiiiirieisie sttt 103
(O T LT N LTV o =T ! OSSPSR 104
DEVICE SEIECTIONeeiviecit ettt b bbbttt bbbt r et nr s 104
eI AN o] =T 0L S T=] (U oIS USPRPSORN 105
Pin ASSIGNMENTS TADIE......ciie i e st et e et e e be e besreesteesteesteebeenseansesnsessaesreens 105
SCHEMALIC BNEFY PROJECT.....eiiiieiecie ettt ettt e e st e s te e s beebeenbeeseeesbesteestaeteesteesaenneesnean 107
Creating DeSign File WIth WHDLc.ooiiiiiiieee bbbt bbb 109
Phase 1: Creating the FPGA design - 32 it FUIl AQGENcovoiiiiiiiiieere e 109
COMPONENES USEU ...ttt bbb et b e et b e bbb bbbt b e b e e bbb et be bbb 109
TOP-IEVEI WHDL FIlE. ..ottt b bbbttt sb et e et b 110
TOP-18VEL INPULS BN OULPULS ...ttt b bbb bbbt eb e e se et nre e 111
Phase 2: Creating the FPGA Design - 2 10 1 CIOCK IMUX......c..eiiiriiiiirieisenieesie ettt 121
(D= o OSSOSO PRSPPI 121
Configure Project to Output SVF and RPD FIlEScc.oiiiiiiiiiie et 122
Compile an Example Project and Build RPD and SVF FileS.........ccooiiiiiiiiiiieee e 124
SIMUIALING TNE DESTON ...ttt sttt b bt e s e b e sb ekt s bt bt e bt e s e e st e b e ke sbeebesbeabeeneenbenbenaen 126

GX3700 User’s Guide Vil

QIS LT T L T T o SR 130
o o [T N Ty 1 o SR 130

(@8 o Tod QY 11 =11 1o ST 131
Chapter 8 - GX3700 EXPANSION BOAIUS ...uciiiieiiiiiiiiiiiiie e e sttt ee e e e e s s e sttee e e e s e s s s st e e e e e e s s snnrnnneeeaeesennnns 133
EXpansion BOard DESIGN GUIGEc..cueiueiitirieiiitiiieiate sttt sr et eb ettt se et sb et b b e bbbt sb e ebenn e anenrenea 133
MEChANICAl LAYOUL GUITEc.eiiiieiietiieeee e b e bbbt b bbb bbbt b e 138
Expansion Board Connectors and Electrical REQUIFEMENLS...........ccoiiiiiiiineiiiiceee e 141
P1 Expansion Board ConNeCtor PiN ASSIGNMENTcoiiiiiieiitiiieiet ettt eb e sr e sresnenea 142
GX3701 EXPANSION BOAITcoevieiiiitiitciiitit ettt ettt bbbttt b ettt e 148
GX370L PrOgraAmMIMING ...cuvevveeeieitestesieeseeseesteseseestessesseeseessessessessesseassesesssessessessessesssssesssessessessessessensenssessessenses 148
GX3701 Expansion Board SPECIfiCALIONcccviiviieiiiicie sttt st nns 148
GX3702 EXPANSION BOAITccviiiiiiicie ettt sttt s e s te e te e eeeneeeneente e teeteesteesaeaneennees 149
J1 — FIEX 1/O BaNK A CONNECIONcveieirieeiiiteseeesre sttt en e nr e en e nr e r e nn e en e nn e erenn e erenne e 149

J2 — FIEX 1/O BaNK B COMNECIONcveieivireiiireseeesrene sttt en e en e nr e n e nn e an e nn e nn e erenne e 150
J3 = FIEX 1/O BaNK C CONMNECIONeveieirireeiiitese sttt en e sn e erenn e r e nn e en e nn e erenn e erenne e 150

JA — FIEX 1/O BanK D CONNECIONcveiiitiieiiiteieeieete ettt ettt eb et eb et eb bttt ne ettt sbe et sb e b e nne e 151
GX3702 Expansion Board SPECIfICALIONceoeiiiriiiie et 151
GX3788 EXPANSION BOAITcoeiviiiiiitiieeiiitiitei etttk b bbbttt bbbttt 152
GXB788 PrOGIAMIMINGcveiitiiteieteite ettt sttt sttt b ettt sttt b e e bt eb e se e bt b s b e bt e b b e bt e be b e bt e b et e bt s b e b e bt be e ebe b b 152
GX3788 Digital and Analog Multi-Function Expansion Board Specification.............ccccooevvineniineneinennen, 153
Chapter 9 - FUNCLION REIEIENCE ... 155
IEFOTUCTION ...ttt bbb bbb bRt Rt bRt r ettt r ettt r e 155
GXFPGA FUNCLIONS. ...tttk r ekt e bt e b st b bt et et n e s r e bt 156
GXFPGADISCANIEVENTSc.veiieeeiti ettt e et e st e st et e et e e s e e saesseesteeste e seenteenseeseesteentaesteesteaseeanneanees 159
GXFPIADMAFTEEIMEBIMOIY ..eiiitiiiiee ettt ettt e et et et et e e bt e s be e e b b e e s bb e e sb b e e s bbeesbb e e s bbeenbbeesbbeennbeenrbeennbeeans 160
GXFPGaDMAGEL TIANSTEISTAIUSvieeiiceie ettt et e et e e e e b e e st e ste e te e beesbeesaeaneesnnes 161
GXFPIADMATIANSTEL ...ttt b bbbt b bbbt b bbbt bbb e enes 162
GXFPIAGEIBOAIASUMMEANYttt ettt ettt bbbttt b bbbt bbbt b st et bbbt ettt n s 163
X PIAGEIBOAIATYPE ...ttt ettt bbb bbbt bbbt bbbt b bt b bbbt bt b e 164
GXFPYaGEIERPIOMSUMIMANYeitiitieieciieie ettt nr et r ettt r bbbt e s e b nb e aren b e s e e e n e nennen 165
GXFPIAGEIDITIVEISUIMIMEIY ...ttt ettt bbbttt bbbt s bbb bbbt b bt e bbbt e bbbttt nenes 166
O T T (= (o] 1] 11 o TP ORISR 167
GXFPaGetEXPanSIONBOAITIDcciiiiiiiie ittt bbbt b et e et e b bt st e st ene e e e tenbe e 170
GXFPGAINTTIATIZE ...t b ettt bbbt bt bt ekt et e b e ke sbe e b e s beene e s e nbenbesaeas 171
GXFPGAINTHIATIZEVISA ...t ettt b bbbt bt st et e b e besbesb e s beebe e st e nbenbesae 172
LC) oo F- 1o - To [OOSR 173

Ly oo o Mo Yo [do] 441 =T=T o] o] o OSSOSO URUSURRUN 174

viii

GX3700 User’s Guide
(O oo T LT 1o K5 - LSS 175
(O oo - LI T S]\ (=Y Lo =SSOSR 176
(O oo T L o S SSN 177
GXFPIAREAI ...ttt ettt b bbbkt E s b E e h e E e b E R E R R R e b bR n bbb nn s 178
CXFPIAREAUREGISIENve vttt bbbt b bbbt b bbbt bbbt b bt b e 179
GXFPYARESEL......c. et R bR r e bt E e e r e are 180
GXFPYASEIEVENT ...t bbbt E et 181
GXFPGAUPGrATEFIIITIVVAEcueiveeeiietiieeteete ettt etttk b bbb bbbt b bttt b ettt 182
GXFPYAUPGradeRimMMWAIESTALUS.cveiveeietirteiietire ettt bbbttt bbbttt ettt e 183
(O oo - AT T U@ 0] A=Y | SO 184
(O oo T YL L (SO SUN 185
L 10 AT E 1 T 0 1] =] OSSPSR 186
GXBTBBINITIANIZE ... bbb bbbt bt e st et e b e b e sb e e bt b e es b et e nbenbenne 187
GXBTBBINITIAIIZEVISAeivecieee et r Rt r et r e bt r e n e r s 188
GXBTBBRESEL...... ettt ettt etttk et e b e et e R e e b e R e e R £ oA e e AR e R Rt R AR e e Re e Rt e Rt e ARt eR e e Rt e nE e e Rt e Eeene e nnnas 189
GX3788GEIBOAIASUMMANY....c.eitiiiiiitiiteieitert ettt ettt b bbb bbb bbb bt s b e bbb bbbttt 190
GX3788GEtCAlIDIAtiONINTOecviiiiiieic bbbt 191
GX3788ANAI0GINGEIGIOUNISOUICTE. ... vttt ettt bbb bbb bbbt b bbb bbb b e enes 192
Gx3788ANAlogINMEaSUrECREANNEL.........c.oiiiiiiitiieec bbbt bbb 193
Gx3788AnalogInScanGetChannelLiStINAEX...........coviiriiiiriiieiieei e 195
GX3788ANAI0GINSCANGEICOUNE ...ttt b bbb bbbt bbb bbb et et n s 196
Gx3788ANaloginScanGetLaStRUNCOUNL..........ceiiiie ettt e st taeste e beeaeaneanees 197
Gx3788ANalogiNSCanGetSAMPIEREALEccvi ettt re et e e ae e e 198
GXx3788ANAlOgINSCANISRUNNING ...ecvviiiiiie ettt e st e s teesbeete e b e esbesteestaeteesteesaeaneennees 199
Gx3788AnaloginScanReadMemMOIrYRAWDALAcccuiiieiiiiicce et ve et taeste e te e snaeanees 200
Gx3788ANnaloginScanReadMeEMOIYVOIAGESeiiuiiieiieeie sttt ettt ve e et e te et e e beesaesnaeannes 201
Gx3788AnalogInScanSetChannelLiStINGEXccciriiiiiiiiiieee e 202
GX3788ANAI0GINSCANSEICOUNT ...ttt b bbb bbbt eb b bt et 203
Gx3788ANalogInSCanSetSAMPIERELEcc.eiiiiiiiiiiee bbbt 204
GX378BANAIOGINSCANSEAITecviieieitieet ittt bbb bbb bbb bbbttt b bt benenes 205
GX3788ANAI0GINSELGIOUNUSOUICEveiitiieiietireeet ettt bbb bbbttt bbb bt 206
GX3788ANAI0GOULGEIOULPULSTALEveveeieeieetiieeeete ettt bbbttt et et e enes 207
GX378BANAIOJOULGEIVOITAGE ... ittt bttt b bbbttt et et e be b b e beeneeneetebeneen 208
GX378BANAIOGOULRESEL ...ttt sttt st b et b e bt e st e b e b e be e bt eb e e bees e et e b e ke sbe et e s beebeeneenebenaen 209
GX378BANAI0JOULSEIOULPULSTALE ... eeeiieeieie ittt sttt sb bt st e bt e et e e et e besbeebeabeeneesnenbenbesaen 210
GX378BANAIOJOULSEEVOITAGEveviieiieeiee ettt bbb bbbttt e e et e be st e et e st e ene e e e tenbenren 211

(€ T A<1e e T T 1 2o o RO 212

GX3700 User's Guide X

GX3788PIOGEIPOICNANNEL......c.iieiiiircie et 213
GXx3788Pi0GetPOrtChANNEIDIFECTION. ..ottt 214
GX3788PIOGEPOIDIIECLIONevevieereeirist et b et r et r et r e n e 215
GXBTBBPIOREAUPOIT ...ttt b bbb bbb bbb bbbt b bt b et e bbbt e et e s 216
GX3788PIOREAUPOITCNANNEL ...ttt bbbt b bbbt e bbb 217
GXBTBBPIORESEIPONT. ...ttt ettt ettt ettt b bbb bbbt bbbt e bbbt b e bt e bt bbbt n bbb e enes 218
GX3788PIORESEIPOICNANNEN ..ottt b et 219
GXBTBBPIOSELPONT ...ttt ettt e bbbt e bbbt bbb bbbt bbbt bbbt b bbbt e 220
GX378BPIOSEPOITCNANNEL ..ottt bbbt b ettt b bt 221
Gx3788Pi0SetPOrtChanNelDIFECLIONcvevriereirisiie et 222
GX378BPIOSEIPOMDINECLIONvuvveiisreiirieiee et b e r etk nr et n b nner e 223
GX3788TriggerGEtOULPULLEVEL.......cviciece et e te e este e te e te e teeseeareesnees 224
GX3788TriggerReadINDULLEVENc..o ottt e e e e s nr e st e te e te e teeseesreesnees 225
GX3788TrigQerSEIOULPULLEVENoeeeiicee et e e e ste e te e te e teesaesreesnees 226

X GX3700 User's Guide

Introduction 1

Chapter 1 - Introduction

Manual Scope and Organization

Manual Scope

The purpose of this manual is to provide all the necessary information to install, use, and maintain the GX3700 /
GX3700e instruments. This manual assumes the reader has a general knowledge of PC based computers, Windows
operating systems, and some understanding of digital 1/O.

This manual also provides programming information using the GX3700 driver (referred in this manual GXFPGA).
Therefore, good understanding of programming development tools and languages may be necessary. The GXFPGA
function library supports both the GX3700 (PXI Hybrid slot compatible) and GX3700e (PXI Express) versions of
the module. The terms GX3700 and GX3700e are used interchangeably throughout the manual, any differences are
noted specifically.

Manual Organization

The GX3700 manual is organized in the following manner:

Chapter

Content

Chapter 1 - Introduction

Introduces the GX3700 manual. Lists all the supported board and shows warning
conventions used in the manual.

Chapter 2 — Overview

Describes the GX3700 features, board description, its architecture, specifications and
the panel description and operation.

Chapter 3 —Installation
and Connections

Provides instructions on how to install a GX3700board and the GXFPGA software.

Chapter 4 —
Programming the Board

Provides a list of the GXFPGA software driver files, general purpose and generic driver
functions, and programming methods. Discusses supported application development
tools and programming examples.

Chapter 5 — GXFPGA
Schematic Entry
Tutorial

Provides an example of how to use the Quartus I1’s Schematic Entry method to design
and FPGA and then load and test the design using the GXFPGA panel.

Chapter 6 — GXFPGA
Verilog Tutorial

Provides an example of how to use Quartus Il and Verilog to design an FPGA and then
load and test the design using the GXFPGA panel.

Chapter 7 — GXFPGA
VHDL Tutorial

Provides an example of how to use Quartus Il and VHDL to design an FPGA and then
load and test the design using the GXFPGA panel.

Chapter 8 — Expansion
Boards

Describes how to design a GX3700 expansion board and describes several standard
expansion boards available from Marvin Test Solutions.

Chapter 9 — Functions
Reference

Provides a list of the GX3700 driver functions. Each function description provides
syntax, parameters, and any special programming comments.

2 GX3700 User’s Guide

Conventions Used in this Manual

Symbol Convention

Meaning

——

G

R

Static Sensitive Electronic Devices. Handle Carefully.

Warnings that may pose a personal danger to your health. For example, shock hazard.

Cautions where computer components may be damaged if not handled carefully.

@
®
v

TIF

Tips that aid you in your work.

Formatting
Convention

Meaning

Monospaced Text

Examples of field syntax and programming samples.

Bold type Words or characters you type as the manual instructs. For example: function or panel
names.
Italic type Specialized terms. Titles of other reference books. Placeholders for items you must

supply, such as function parameters

Overview 3

Chapter 2 - Overview

Introduction

The GX3700 / GX3700e is a user configurable, FPGA based, 3U PXI / PXI Express card which offers 160 digital
1/0 signals which can be configured for single-ended or differential interfaces. The card employs the Altera Stratix
I11 FPGA, which can support data rates up to 1.2 Gb/s (SerDes interface) and features over 65,000 logic elements
and 2.636 Kb of memory. The GX3700 / GX3700e is supplied with an expansion board, GX3701 — Flex 1/0O Feed
Through Module, providing access to the FPGA’s 160 1/Os. Alternatively, users can design their own custom
expansion cards for specific applications eliminating the need for additional external boards which are cumbersome
and physically difficult to integrate into a test system. The design of the FPGA is done by using Altera’s free
Quartus Il Web Edition tool set. Once the user has compiled the FPGA design, the configuration file can be loaded
directly into the FPGA or via an on-board EEPROM.

Features

The GX3700 / GX3700¢’s digital I/O signals are 5 volt tolerant. Logic families supported by the I/O interface
include LVTTL, LVDS and LVCMOS. The FPGA’s I/Os includes 160 single ended 1/O with support for 32
differential pairs, 4 dedicated global clock inputs (2 differential pairs), and various VCCIO voltages. At power-up,
all 1/0s will be isolated from the UUT. The FPGA device supports up to four phase lock loops (PLL) for clock
synthesis, clock generation and for support of the I/O interface. An on-board 80 MHz oscillator is available for use
with the FGPA device or alternatively, the PXI 10 MHz or 100 MHz clock can be used as a clock reference by the
FPGA.

The FPGA has access to all of the PXI Express bus resources including the PXI 10 MHz clock, PXle 100 MHz
clock, PXle Sync100, PXle DStar triggers, the local bus, and the PXI triggers; allowing the user to create a custom
instrument which incorporates all of the PXI Express bus resources. . The GX3700’s FPGA has access to all of the
PXI Hybrid slot compatible resources including PXI 10 MHz clock, the local bus, and the PXI triggers Control and
access to the FPGA is provided via the GX3700 / GX3700¢’s driver which includes tools for downloading the
compiled FPGA code as well as register read and write functionality.

The GX3700 / GX3700e include the provision to add a daughter board which will provide additional flexibility for
those users who wish to design their own custom interfaces for specific applications.

Communication between the customer-programmable FPGA and the PXI/PXle bus is implemented via a dedicated
FPGA device (Interface FPGA). The Interface FPGA contains control and status registers for the board and provides
in-system programmability of the customer-programmable FPGA. The Interface FPGA interfaces directly to the
PXI1/PXIle bus and will decode/encode the bus protocol.

The GX3700 has external SRAM, flash, and an external clock source that is accessible by the customer.
The GX3700 employs the Altera Stratix 111 780 pin device. Key features for the Altera device includes:
e 47,500 logic elements (LEs) and 1.88Mbits of memory

e Supports up to four phase-locked loops (PLLs) for clock synthesis, clock generation and support of I/O
interfaces

e Up to five outputs per PLL can be accessed

o Dynamically reconfigurable logic supports programmable phase shift, frequency multiplication/division,
and in-system frequency re-programming without reconfiguring the device

e Support for high-speed external memory interfaces including DDR, DDR2, SDR, SDRAM, and QDRI
SRAM at up to 400 megabits per second (Mbps)

e 327 1/0 pins arranged in eight 1/O banks that support a wide range of industry 1/0 standards
e Supports up to 875 Mbps receive and 840 Mbps transmit LVVDS communications data rates

4 GX3700 User's Guide

e Support for Bus LVDS (BLVDS), LVDS, RSDSe, mini-LVDS and PPDSe differential 1/0 standards

e Supported 1/O standards include LVTTL, LVCMOQOS, SSTL, HSTL, PCI, PCI-X, LVPECL, LVDS, mini-
LVDS, RSDS, and PPDS; PCI Express Base

e 160 single ended 1/0s.

o 32 differential pairs.

e 4 dedicated global clock inputs (2 differential pairs).

e VCCIO can be preset using on-board jumpers to 1.2V, 2.5V, or 3.3V.

e Internal FFGA SRAM (memory size depends on internal FPGA model installed)

e 1MB external SRAM in addition to internal FPGA SRAM.

e 16MB flash

e User controlled LED.

e Integrated DMA engine.

o All of PXI/PXIle instrumentation signals such as differential Star Trigger, SYNC100, CLK100, CLK10,

local bus, trigger bus, and single-ended Star Trigger are available to customer.

Applications

Automatic Test Equipment (ATE) and Functional Test

Data Acquisition

Process Control

Factory Automation

Overview 5

Board Description

The GX3700 is a 3U PXI hybrid slot compatible instrument card that consists of 160 TTL I/O Channels divided into
groups of 40 channels. Each of these groups is connected to a 68 pin SCSI type connector on the front panel of the
instrument (J1-J4) using a daughter board module (GX3701). A short on JP7 will force the user FPGA to be

configured automatically on boot up using the contents of the EEPROM. For more information about the connectors

and jumpers and their location on the board refer to Chapter 3 — Installation and Connections.

3 \OLEXD

=LY Z Na

™D
OO—-00Z

e B Y
noMaL B

5 e
%
/4 n
WEN WAL N S
BB O/\ x\

L

&T)
JNPOW UD
2D

'!a
°®

Figure 2-1: GX3700e Board with the GX3701 Module Mounted

6 GX3700 User’s Guide

PERINSNIIIIIINIS:

o
oS
=
A
S
=
=
N

Figure 2-2: GX3700 Board with the GX3701 Module Mounted

Overview 7

Architecture

The GX3700 consists of a user programmable FPGA that can access external resources and peripherals such as the
PCI bus, SRAM and flash memories. The user FPGA is an Altera Stratix 111 that can be programmed directly
through the software driver or indirectly by the onboard EEPROM that can store a FPGA bit stream for later use. An
Expansion board connects to the User FPGA to provide external 1/0. The standard expansion board provides 160
1/0O channels that are brought out to the front panel. The user may design custom expansion boards based on
documentation provided by Marvin Test Solutions.

External SRAM Flash Memory

User FPGA)
Altera Stratix Ill FPGA Expansion Board
780 1/0 Pins
PXI ' '
Interface
Address
PXIBus PXI Local Bus PXI
And Trigger Bus 10 Mhz

Figure 2-3: GX3700 Architecture

8 GX3700 User's Guide

Memory
The Gx3700 has three types of memories, internal SRAM, external SRAM and Flash memory.
Figure 2-6 is a more detailed block diagram of the connections between the User’s FPGA, the Flash and the SRAM

fsm_a(23:1)
fsm_d(15:0)
flash _cen

fsm_a(23:1)
fsm_d(31:0)

\ 4

A(22:0)
D(15:0)

A

flash_oen
flash resetn .| Flash
flash_wen g
flash_busy n
flash_byte n

\ 4

\ 4

A

\ 4

User fsm_d(31:0) |
FPGA fsm_a(19:2)

D(31:0)
A(17:0)

sram_ben0
sram_benl
sram_ben2 g SRAM
sram_ben3

sram_wen

\ 4

\ 4

sram_cen
sram_oen

\ 4

\ 4

fsm_a(1..23)
fsm_d(0..31)

User
FPGA

fsm_a(1..23)

.

fsm_d(0..31)

flash_ce n

flash 0 e n

flash_reset n

flash_we n

¥ ¥ ¥ Y ¥ ¥

flash_busy n

flash_byte n

fsm_d(0..31)

A(1..22)
D(0..15)

Flash

fsm_a(2..19)

P

sram_ben 0

>

sram_ben_1

sram_ben 2

sram_ben 3

sram_we n

sram_ce n

sram_oe _n

¥ ¥ ¥ ¥Y ¥Y Y Y

D(0..31)
A(0..17)

SRAM

Overview 9

GX3700/e Connections Between User FPGA, Flash, and SRAM

Figure 2-4: GX3700 / GX3700e Connections between User FPGA, Flash, and SRAM

10 GX3700 User’s Guide

PXI/PXle and PC Connections

The User FPGA, Stratix |11, can be configured either through the EEPROM or directly through the PXI Interface. It
has access to PXI resources such as the local bus, trigger bus, and PXI 10 Mhz clock source and is also connected to
the PXI Interface FPGA to give access to PCI resources and memory. This allows the User FPGA to communicate
with the host system’s operating system using the provided GXFPGA software library functions.

A more detailed diagram of the PXI/PXIle Signal Connections is shown below . It shows the different PXI/PXle
signals and how they are interfaced to the User FPGA.

The bi-directional bus switch with level shifting allows the PXI/PXIe signals to be interfaced to the User FPGA. The
direction of the signals is controlled and determined by the signals from the User FPGA.

For example, to use the signal PXITrig(7), the user FPGA would be programmed as follows:
1. Ifthissignal is only used as an input, define it inside the User FPGA as an input pin.

2. However, if the signal is used as an output only or a bidirectional 1/0, define it as such in the User FPGA but
make sure to drive the output to high impedance or tri-state level when the signal is not driving or is inactive.

In both of these cases the level translation and the direction of the signals are handled by the on-board bus switch.

Also shown are the buffers for the DSTAR_A, DSTAR_B and DSATR_C signals. These buffers conform to the
standard as required by the PXI Systems Alliance’s PXI Express Hardware Specification Rev 1.0. Note that the
DSTAR signals are only available with the GX3700e module.

StarTrig €+—————» Bi- < >
PXI1OMHz —— | Directional >
PXITrig(7:0) <«———>»| Bus Switch |« >
PXI_LBR6 «——» W/level |q >
PXI_LBL6 «——»{ Shifting |q >
User
LVPECL-
- —> -
DSTAR_A +/ to-LVTTL FPGA
LVDS-to-
- — >
DSTAR_B +/ LVTTL
LVTTL-to-
- —————————— <
DSTAR_C +/ LVDS

Figure 2-5: PXI/PXIle Signal Connections

Overview 11

Inter-FPGA Bus Interface Timing

The Flex FPGA communicates with the PCI/PCle host via the PXI/PXle Bridge FPGA. The following figure shows
the inter-FPGA timing diagram for communication between the two FPGAs.

((
CS(3:1)/LEXT
Addr(19:2) Al A2 A3 X A4
WrEn
FDt (31:0) D1 D2 X D3 X D4
Write Cycle
wo L L U DU OUULUL
((

CS(3:1)ILEXT

Addr (19:2) ‘Gl A2 A3 X A4

RdEnN
One or ¢
LRead_DV more clock
cycles
FDt (31:0) D1 D2 X D3 D4

Read Cycle

Figure 2-6 — Inter-FPGA Bus Interface Diagram

12 GX3700 User’s Guide

DMA FIFO Interface Timing

The PXI Bridge FPGA contains the DMA engine for transferring data between the Flex FPGA and the PCI/PCle
host. Unlike a Scatter-Gather DMA engine, this one will need a contiguous memory space.

There are two 32-bit buses between the PXI Bridge FPGA and the Flex FPGA for transmit and receive of DMA
data.

For DMA write, the DMA controller will read data from the Flex FPGA and write this data to the host PC. The
controller will only read data when it’s in DMA write mode and will only read when the EMPTY signal is de-
asserted. The controller will only read up to the number of byte count specified for the DMA transfer and will not
read more even if the FIFO is still empty.

For DMA read, the DMA controller will read data from the PC host and will write this data to the Flex FPGA.
When in DMA read mode, the Flex FPGA must expect data and must store it. Otherwise, this data will be lost.

RX_DMA_FIFOFUﬂ
L

RX_DMA DV
RX_DMA_DAT(31:0)

D1 D2 X D3 x D4

L

DMA Read FIFO I/F Read from PC host and write to memory

(<

TX_DMA_FIFOEMPTY

TX_DMA_FIFO_RD

A

TX DMA Zero or more
oV clock cycles

D1 D2 x D3 X D4

TX_DMA_DAT(31:0)
DMA Write FIFO I/F Read from memory and write to PC host

Figure 2-7: DMA FIFOs Timing Diagram

Specifications

The following table outlines the specifications of the GX3700 / GX3700e.

Digital I/O Channel

Logic Families

LVTTL, LVDS, configurable for 1.2 /2.5/3.3 V logic; 5
volt compatible (programmable via the FPGA on a per
pin basis)

Output Current

+/ 12.0 mA, max. (programmable via the FPGA on a per
pin basis)

Input Leakage Current

+/- 10 UA

Power On State

Programmable by line, default is disconnect at power on

Number of Channels

4 banks of 40 1/O signals. Direction is configurable on a
per pin basis Disconnect on a per bank basis

Protection

Overvoltage: -0.5V to 7.0V (input) Short circuit: up to 8
outputs may be shorted at a time

Daughter Board User
Connectors

(4) SCSI 111, VHDCI type, 68 pin female

Expansion Board Interface

Board ID 4 bits

Digital 1/0 160, each bank of 40 can be configured to bypass or
access the expansion board

FPGA Flex I/0 4 signals

Master Clear

From PXI interface

Power

+/- 12 volts, +5 volts, +3.3 volts, +2.5 volts, +1.2 volts

Timing Source

PX1 10 MHZ

PXI1 Bus

Internal

80 MHz oscillator, +/- 20 ppm

14 GX3700 User’s Guide

User FPGA
FPGA Type Default;
3700: Stratix 111, EP3SL50F780
3700e: Stratix |11, EP3SL70F780
Check the instrument panel, About page for newer
versions.
Number of PLLs Four
Logic Elements 47,500
Internal Memory FPGA dependent:

EP3SL50: 2,133 Kb
EP3SL70: 2,636 Kb
EP3SL110: 4,875 Kb
EP3SL150: 6,390 Kb
EP3SL200: 10,646 Kb
EP3SL340: 18,381 Kb
EP3SES50: 5,625 Kb
EP3SES80: 6,683 Kb
EP3SE110: 8,727 Kb
EP3SLE260: 16,282 Kb

Power
3.3VDC 400 mA (typ.); 1 A (Max.)
5VvDC 300 mA (typ.); 1.2 A (Max.)

12 VDC (For Expansion Board)

Expansion Board Dependent

Environmental

Operating Temperature 0to50°C
Storage Temperature -20°Cto 70° C
Size 3U PXI
Weight 200 ¢

Overview 15

Virtual Panel Description

The GX3700 includes a virtual panel program, which enables full utilization of the various configurations and

controlling modes. To fully understand the front panel operation, it is best to become familiar with the functionality
of the board.

To open the virtual panel application, select GX3700 Panel from the Marvin Test Solutions, GXFPGA menu
under the Start menu. The GX3700 virtual panel opens as shown here:

,?_ FPGA Board > IEH

Setup | 1/0 PIO | About
FPGA

ile EEPROM oad from EEFRO

[T}

EEPROM

Reset App Close Help

Figure 2-8: GX3700 Virtual Panel

Initialize — Opens the Initialize Dialog (see Initialize Dialog paragraph) in order to initialize the board driver. The
current settings of the selected board will not change after calling initialize. The panel will reflect the current
settings of the board after the Initialize dialog closes.

Reset — Resets the PXI board settings to their default state and clears the reading.
Apply — Applies changed settings to the board.
Close — Closes the panel. Closing the panel does not affect the board settings.

Help — Opens the on-line help window. In addition to the help menu, the caption shows a What’s This Help button
(?) button. This button can be used to obtain help on any control that is displayed in the panel window. To displays
the What’s This Help information click on the (?) button and then click on the control — a small window will
displays the information regarding this control.

16 GX3700 User's Guide

Virtual Panel Initialize Dialog

The Initialize dialog initializes the driver for the selected board. The board settings will not change after initialize is
called. Once initialized, the panel will reflect the current settings of the board.

The Initialize dialog supports two different device drivers that can be used to access and control the board:

1.

Use Marvin Test Solutions’ HW — This is the device driver installed by the setup program and is the default
driver. When selected, the Slot Number list displays the available GX3700 boards installed in the system and
their slots. The chassis, slots, devices and their resources are also displayed by the HW resource manager,
PXI/PCI Explorer applet that can be opened from the Windows Control Panel. The PXI/PCI Explorer can be
used to configure the system chassis, controllers, slots and devices. The configuration is saved to PXISYS.INI
and PXIeSYS.INI located in the Windows folder. These configuration files are also used by VISA. The
following figure shows the slot number 0x109 (chassis 1 Slot 9). This is the slot number argument (nSlot)
passed by the panel when calling the driver GxFpgalnitialize function which is used to initialize the driver for

the specified board.
Initialize » IEl

Device Driver: (®) Use HW /P Explorer () Use VISA 0K

Slot Number: Chassis 1 Slot 9 (0x109) v Cancel

Figure 2-9: Initialize Dialog Box using Marvin Test Solutions’ HW driver

Use VISA — This is a third-party device driver usually provided by National Instrument (NI-VISA). When
selected, the Resource list displays the available boards installed in the system and their VISA resource
address. The chassis, slots, devices and their resources are also displayed by the VISA resource manager,
Measurement & Automation (NI-MAX) and by Marvin Test Solutions PXI/PCI Explorer. The following
figure shows PX19::13::INSTR as the VISA resource (PCI bus 9 and Device 13). This is a VISA resource string
argument (szVisaResource) which is passed by the panel when calling the driver GxFpgalnitializeVisa
function which initializes the driver for the specified board.

Initialize ? n

Resource: FI9:13:INSTR v Cancel

Figure 2-10: Initialize Dialog Box using VISA resources

Overview 17

Virtual Panel Setup Page

After the board is initialized, the panel is enabled and will display the current setting of the board. The following
picture shows the Setup page settings:

I EPGA Board (0x108) IEN

Setup | 1/0 About
FPGA
() Volatle @ EEPROM:

NP Reresssenssensansen: ;

Load from EEPROM |

File : |\\geoserver\projects\WIP\2oo-Hardware3-Combir| Load

Firmware programming completed successfully

EEPROM
Last Upload On : [Fri Jun 13 16:44:51 2014

File Name : GX3700_user_SL70_v0009

Inttizlize... Reset Apply Close Help

Figure 2-11: GX3700 Virtual Panel — Setup page
The following controls are shown in the Setup page:
Volatile radio button: Select this radio button to load the File to the Volatile (current) FPGA configuration.
EEPROM radio button: Select this radio button to load File to the EEPROM FPGA.

Load From EEPROM button: Loads the volatile (current FPGA) with the FPGA configuration that is stored in the
EEPROM

File text box: File path to the programming file intended to load the volatile FPGA or EEPROM. The File type must
be Serial Vector File (.svf) for Volatile loading or Raw Programming Data (.RPD) file for EEPROM.

Load Button: Starts the loading process, either to the volatile FPGA or to the EEPROM, depending on which radio
button the user selects.

EEPROM Last Updated On Text: Indicates the last time the EEPROM was loaded.
EEPROM File Name Text: Indicates the last file name that was written to the EEPROM.

18 GX3700 User’s Guide

Expansion Board Bypass Checkboxes: These checkboxes control the routing of each of the FPGA’s I/O Banks.
When the box is checked, it indicates that the 1/0 Bank will be connected directly to the 1/O front connectors. If the
box is unchecked, it indicates that the 1/0 Bank will be connected to the expansion board.

Virtual Panel I/O Page

Clicking on the 1/O tab will show the 1/O page as shown in Figure 2-9: GX3700 Virtual Panel — 1/0 page

FPGA Board (0x108) > IEl

Setup | 1/0 About

FPGA Reqisters FPGA Mem BAR2

Offset : | EREAN | Offset : | (00000000

Data : |(x00000000 Write Data : | (x00000000 Write
Read Read

FPGA Mem BAR3 FPGA Mem BAR4

Offset : | (00000000 Offset : | 2x00000000

Data : |(<00000000 Write Data : |(x00000000 Write
Read Read

Inttizlize... Reset Apply Close Help

Figure 2-12: GX3700 Virtual Panel — 1/O page
The following controls are shown in the 1/0O page:

Offset Text Field: The offset into the FPGA Register or Memory space (BAR2-4) in bytes. This field can be used
with a decimal or hexadecimal value (prefix the value with 0x). The offset is limited to 0x400 bytes when reading
the register space and 0x40000 bytes when reading the memory space. Offset must be specified on a 4-byte
alignment.

Write Text Field: The 32-bit data (hexadecimal or decimal) to be written the specified offset in either FPGA
Register or Memory space (BAR2-4).

Write Button: Write the 32-bit double word to either the FPGA Register or Memory space at the specified offset.

Read Text Field: The 32-bit data that has been read from the specified offset in either FGPA Register or Memory
space. Value is specified in hexadecimal.

Read Button: Read the 32-bit double word from either the FPGA Register or Memory space at the specified offset.

Virtual Panel DAQ Page (GX3788)

Overview 19

Clicking on the DAQ tab will show the DAQ page as shown in Figure 2-13: GX3788 Virtual Panel — DAQ page
The DAQ tab only appears when the GX3788 daughter board is used.

-

B FPGA Board (0x106)

? | |

Digital 110

ReadBack Data : | OxAABBFFFF

(kAASSAASS
Direction (1=0ut) : Qx<FFFFO000
Analog In
Channel Mode Range Measurement i
0 Single Ended +/1360V 1.12v =
1 Differential +/-1360V 1733V
2 Single Ended +/-1360V 1871V
3 Differential +/-5.12V 0.896 V
4 Single Ended +-1360V 2606V
5 Single Ended +-1024 V 2453V
5 Single Ended +/-1360V 2161V -
Mode : |SingleEnded v | Range: [+-1360V -
Ch 0-7: [ﬁnalng Ground v] Ch 8-15: [Dig'rtal Ground v]
Analog Output
0: 0.000 2. 2500 4: 4500 6. 6.500
1: 1.000 3: 3.000 5: 5.000 7: 7.000
Enable All Channels Outputs [Reset Al Channels]
[1r1'rtialize...] [Beset] Applhy [Close] [Help]

Figure 2-13: GX3788 Virtual Panel — DAQ page

The following controls are shown in the DAQ page:
Digital 1/0 Group Box

Port Combo Box: Select the digital 1/0 port (0-2) to configure. The output data and direction can be set and read

for the selected digital port.

Readback Field: The 32-bit data that has been read from the specified digital port. This is an actual sampling of the

digital line states at the selected digital port.

Data Text Field: The 32-bit output data (hexadecimal or decimal) to be written the specified digital port. A '1' bit

signifies a logic high and a '0' bit signifies a logic low.

Set Button: Writes the Data field contents to the digital port selected.

Direction Text Field: The 32-bit direction data (hexadecimal or decimal) to be written to the specified digital port.
A '1' bit signifies an output channel and a '0' bit signifies an input channel.

20 GX3700 User’s Guide

Set Button: Writes the Direction field contents to the digital port selected.
Analog In Group Box

Analog In List: Displays a continuously updating voltage measurement from each of the 16 analog input channels.
In addition, each channels measurement mode and range are also shown.

Mode Combo Box: Sets the channel mode to use for a channel's measurement (single ended or differential)
Range Combo Box: Sets the channel range to sue for a channel's measurement

Ch 0-7 Combo Box: Sets the ground source for analog in channels 0 to 7

Ch 8-15 Combo Box: Sets the ground source for analog in channels 8 to 15

Analog Output Group Box

Enable All Channels Outputs Check Box: Sets all the analog output channels to enabled or disabled
Reset All Channels Button: Reset all the analog output channels to default settings

Voltage Edit Box Fields (Channel 0 to Channel 7): Enter output voltages for each of the analog output channels.
Each channle’s Voltage edit box has a set button to apply the new voltage settings.

Overview 21

Virtual Panel About Page

Clicking on the About tab will show the About page as shown in Figure 2-7

o EPGA Board (0x108) ?
Setup | /O About
4 GXIT00/GX3700e FLEX FPGA Boards

Version 2.2
Copyright © 2005-2013, Marvin Test Solutions, Inc., All Rights Reserved.

?! GxFpaga - 3U PXlinstrument driver for the GX3500 and
=

Gxc3700 FLEX FPGA Board, FPGA-Version: (k0007
User FPGA Type: Stratic |1l EP3SL50F70
S/N: GXAT000034-AL-AB-00
Expansion Board type: Programmable /0

Upgrade Fimware. ..

Initialize ... Reset Apphy Close Help

Figure 2-14: GX3700 Virtual Panel — About Page

The top part of the About page displays version and copyright of the GX3700 driver. The bottom part displays the
board summary, including the main board FPGA version, user FPGA part number, serial number, and each installed
I/0 Module FPGA version. The About page also contains a button Upgrade Firmware... used to upgrade the
board FPGA. This button maybe used only when the board requires upgrade as directed by Marvin Test Solutions
support. The upgrade requires a firmware file (.jam) that is written to the board FPGA. After the upgrade is
complete you must shut down the computer to recycle power to the board.

22 GX3700 User’s Guide

Installation and Connections 23

Chapter 3 - Installation and Connections

Getting Started

This section includes general hardware installation procedures for the GX3700 board and installation instructions for
the GX3700 (GXFPGA) software. Before proceeding, please refer to the appropriate chapter to become familiar
with the board being installed.

To Find Information on.. Refer to..
Hardware Installation This Chapter
GX3700 Driver Installation This Chapter
Programming Chapter 4
GXFPGA Design Tools and Tutorial Chapter 5,6 and 7
Expansion Boards Chapter 8
GX3700 Function Reference Chapter 9

Interfaces and Accessories

The following accessories are available from Marvin Test Solutions for GX3700 switching board.

Part / Model Number Description

GT95015 Connector Interface SCSI to 100 Mil Grid Differential
GT95021 2’ 68-Pin shielded cable

GT95022 3’ 68-Pin shielded cable

GT95028 10’ 68-Pin shielded cable

GT95031 6’ 68-Pin shielded cable

Packing List

All GX3700 boards have the same basic packing list, which includes:

1. GX3700 Board
2. GXFPGA Driver Disk

Unpacking and Inspection

After removing the board from the shipping carton:

—

h
(\I/J Caution - Static sensitive devices are present. Ground yourself to discharge static.

1. Remove the board from the static bag by handling only the metal portions.

2. Be sure to check the contents of the shipping carton to verify that all of the items found in it match the packing
list.

3. Inspect the board for possible damage. If there is any sign of damage, return the board immediately. Please refer
to the warranty information at the beginning of the manual.

24 GX3700 User’s Guide

System Requirements

The GX3700 Instrument board is designed to run on PXI compatible computer running WindowsXP SP3-Windows
10 (32/64-bit).

The board requires one unoccupied 3U PXI bus slot.

Installation of the GXFPGA Software

Before installing the board, it is recommended that you install the GXFPGA software as described in this section. To
install the GXFPGA software, follow the instruction described below:

1. Insert the Marvin Test Solutions CD-ROM and locate the GXFPGA.EXE setup program. If your computer’s
Auto Run is configured, when inserting the CD, a browser will show several options. Select the Marvin Test
Solutions Files option and then locate the setup file. If Auto Run is not configured, you can open the Windows
explorer and locate the setup files (usually located under \Files\Setup folder). You can also download the file
from Marvin Test Solutions’ web site (www.marvintest.com).

2. Runthe GXFPGA setup and follow the instruction on the Setup screen to install the GXFPGA driver.

Note: When installing under Windows, you may be required to restart the setup logging-in as a user with
Administrator privileges. This is required in-order to upgrade your system with newer Windows components
and to install kernel-mode device drivers (HW.SYS and HWDEVICE.SYS) which are required by the
GXFPGA driver to access resources on your board.

3. The first setup screen to appear is the Welcome screen. Click Next to continue.

4. Enter the folder where GXFPGA is to be installed. Either click Browse to set up a new folder, or click Next to
accept the default folder of C: \Program Files\Marvin Test Solutions\GXFPGA for 32-bit
Windows or C:\Program Files (x86)\Marvin Test Solutions\GXFPGA for 64-bit Windows.

5. Select the type of Setup you wish and click Next. You can choose between Typical, Run-Time and Custom
setups types. The Typical setup type installs all files. Run-Time setup type will install only the files required
for controlling the board either from its driver or from its virtual panel. The Custom setup type lets you select
from the available components.

The program will now start its installation. During the installation, Setup may upgrade some of the Windows shared
components and files. The Setup may ask you to reboot after completion if some of the components it replaced were
used by another application during the installation — do so before attempting to use the software.

You can now continue with the installation to install the board. After the board installation is complete you can test
your installation by starting a panel program that lets you control the board interactively. The panel program can be
started by selecting it from the Start, Programs, GXFPGA menu located in the Windows Taskbar.

Setup Maintenance Program

You can run the Setup again after GXFPGA has been installed from the original disk or from the Windows Control
Panel — Add Remove Programs applet. Setup will be in the Maintenance mode when running for the second time.
The Maintenance window show below allows you to modify the current GXFPGA installation. The following
options are available in Maintenance mode:

e Modify. When you want to add, or remove GXFPGA components.
e Repair. When you have corrupted files and need to reinstall.
¢ Remove. When you want to completely remove GXFPGA.

Select one of the options and click Next and follow the instruction on the screen until Setup is complete.

http://www.marvintest.com/

Installation and Connections 25

Overview of the GXFPGA Software

Once the software is installed, the following tools and software components are available:

e GXFPGA Panel — Configures and controls the GXFPGA board various features via an interactive user
interface.

o GXFPGA driver - A DLL based function library (GXFPGA.DLL, located in the Windows System folder)
used to program and control the board. The driver uses Marvin Test Solutions” HW driver or VISA
supplied by third party vendor to access and control the GXFPGA boards.

e Programming files and examples — Interface files and libraries for support of various programming tools.
A complete list of files and development tools supported by the driver is included in subsequent sections of
this manual.

e Documentation — On-Line help and User’s Guide for the board, GXFPGA driver and panel.

e HW driver and PXI/PCI Explorer applet — HW driver allows the GXFPGA driver to access and
program the supported boards. The explorer applet configures the PXI chassis, controllers and devices. This
is required for accurate identification of your PXI instruments later on when installed in your system. The
applet configuration is saved to PXISYS.ini and PXIeSYS.ini and is used by instruments HW driver and
VISA. The applet can be used to assign chassis numbers, Legacy Slot numbers and instrument alias names.
The HW driver is installed and shared with all Marvin Test Solutions products to support accessing the PC
resources. Similar to HW driver, VISA provides a standard way for instrument manufacturers and users to
write and use instruments drivers. VISA is a standard maintained by the VXI Plug & Play System Alliance
and the PXI Systems Alliance organizations (http://www.pxisa.org/). The VISA resource manager such as
National Instruments Measurement & Automation (NI-MAX) displays and configures instruments and
their address (similar to Marvin Test Solutions’ PXI/PCI Explorer). The GXFPGA driver can work with
either HW or VISA to control an access the supported boards.

Installation Folders

The GX3700 driver files are installed in the default folder C:\Program Files [(x86)]\Marvin Test
Solutions\GXFPGA. You can change the default GXFPGA folder to one of your choosing at the time of
installation.

During the installation, GXFPGA Setup creates and copies files to the following folders:

Name Purpose / Contents

...\Marvin Test Solutions\GXFPGA The GXFPGA folder. Contains panel programs, programming libraries,
interface files and examples, on-line help files and other documentation.

...\Marvin Test Solutions\HW HW device driver. Provide access to your board hardware resources such
as memory, 10 ports and PCI board configuration. See the
README.TXT located in this directory for more information.

...\ATEasy\Drivers ATEasy drivers folder. GXFPGA Driver and example are copied to this
directory only if ATEasy is installed to your machine.
...\Windows\System or System32 Windows System directory. Contains the GXFPGA DLL,

GXFPGAG64.DLL drivers, HW driver shared files and some upgraded
system components, such as the HTML help viewer, etc.

http://www.pxisa.org/

26 GX3700 User’s Guide

Configuring Your PXI System using the PXI/PCI Explorer

To configure your PXI/PCI system using the PXI/PCI Explorer applet follow these steps:

1.

Start the PXI/PCI Explorer applet. The applet can be start from the Windows Control Panel or from the
Windows Start Menu, Marvin Test Solutions, HW, PXI/PCI Explorer.

Identify Chassis and Controllers. After the PXI/PCI Explorer is started, it will scan your system for changes
and will display the current configuration. The PXI/PCI Explorer automatically detects systems that have
Marvin Test Solutions controllers and chassis. In addition, the applet detects PXI-MXI-3/4 extenders in your
system (manufactured by National Instruments). If your chassis is not shown in the explorer main window, use
the Identify Chassis/Controller commands to identify your system. Chassis and Controller manufacturers should
provide INI and driver files for their chassis and controllers which are used by these commands.

Change chassis numbers, PXI devices Legacy Slot numbering and PXI devices Alias names. These are
optional steps and can be performed if you would like your chassis to have different numbers. Legacy slots
numbers are used by older Marvin Test Solutions or VISA drivers. Alias names can provide a way to address a
PXI device using a logical name (e.g. “FPGA1”). For more information regarding slot numbers and alias hames,
see the GX3700Initialize and GxFpgalnitializeVisa functions.

Save your work. PXI Explorer saves the configuration to the following files located in the Windows folder:
PXISYS.ini, PXleSYS.ini and GxPxiSys.ini. Click on the Save button to save your changes. The PXI/Explorer
will prompt you to save the changes if changes were made or detected (an asterisk sign * * in the caption
indicated changes).

| & PXI1/PCl Explorer ﬂ |

Slots | status |

- ™ PXI| System <Extemal PC>
(=[] Chassis 1 <GX7000> <S/N : 54>
-/ Slot 1 <System Slot>
B@ Slot 3 - GX7400 Dual-Output Programmable Power Supply Board
¢ i A VISA Resource = PXI6::14:INSTR [Status=Device is working propery]
- A nSlot = (x103
S8 | cqacy nSiot = 3
i A Alias =
~ Device Settings
. @71 PXI Settings
@ Slot 9 - GX5961/4 Digital /O Timing / Sync with Pin Electronics and PMU Boarc
[-(5) Slot 15 - GX2065 Digital Multimeter Board

Display Options ... I Reset Chassis List I Scan for New Devices I Save I

Legacy nSlot : |3 _:_'

Figure 3-1: PXI/PCI Explorer

Installation and Connections 27

Board Installation

Before you Begin

e Install the GXFPGA driver as described in the prior section.

e Configure your PXI/PC system using PXI/PCI Explorer as described in the prior section.

o Verify that all the components listed in the packing list (see previous section in this chapter) are present.
Electric Static Discharge (ESD) Precautions

To reduce the risk of damage to the GX3700 board, the following precautions should be observed:

e Leave the board in the anti-static bags until installation requires removal. The anti-static bag protects the
board from harmful static electricity.

e Save the anti-static bag in case the board is removed from the computer in the future.
e Carefully unpack and install the board. Do not drop or handle the board roughly.

e Handle the board by the edges. Avoid contact with any components on the circuit board.

® Caution — Do not insert or remove any board while the computer is on. Turn off the power from the PXI
chassis before installation.

Installing a Board

Install the board as follows:

1. Install first the GXFPGA Driver as described in the next section.
Turn off the PXI chassis and unplug the power cord.

2

3. Locate a PXI empty slot on the PXI chassis.

4. Place the module edges into the PXI chassis rails (top and bottom).
5

Carefully slide the PXI board to the rear of the chassis, make sure that the ejector handles are pushed out (as
shown in Figure 3-2).

28 GX3700 User’s Guide

Figure 3-2: Ejector handles position during module insertion

6. After you feel resistance, push in the ejector handles as shown in Figure 3-3 to secure the module into the

frame.
== =
e ﬂ@ | N
H.
: 1 | H L
o|l—F ||
| =5

Figure 3-3: Ejector handles position after module insertion

7. Tighten the module’s front panel to the chassis to secure the module in.
8. Connect any necessary cables to the board.

9. Plug the power cord in and turn on the PXI chassis.

Installation and Connections 29

Plug & Play Driver Installation

Plug & Play operating systems such as Windows notifies the user that a new board was found using the New
Hardware Found wizard after restarting the system with the new board.

If another Marvin Test Solutions board software package was already installed, Windows will suggest using the
driver information file: HW.INF. The file is located in your Program Files\Marvin Test Solutions\HW folder. Click
Next to confirm and follow the instructions on the screen to complete the driver installation.

If the operating system was unable to find the driver (since the GXFPGA driver was not installed prior to the board
installation), you may install the GXFPGA driver as described in the prior section, then click on the Have Disk
button and browse to select the HW.INF file located in C:\Program Files [(x86)]\Marvin Test Solutions\HW.

If you are unable to locate the driver click Cancel to the found New Hardware wizard and exit the New Hardware
Found Wizard, install the GXFPGA driver, reboot your computer and repeat this procedure.

The Windows Device Manager (open from the System applet from the Windows Control Panel) must display the
proper board name before continuing to use the board software (no Yellow warning icon shown next to device). If
the device is displayed with an error, you can select it and press delete and then press F5 to rescan the system again
and to start the New Hardware Found wizard.

Removing a Board
Remove the board as follows:
Turn off the PXI chassis and unplug the power cord.
Locate a PXI slot on the PXI chassis.
Disconnect and remove any cables/connectors connected to the board.

1

2

3

4. Un-tighten the module’s front panel screws to the chassis.

5. Push out the ejector handles and slide the PXI board away from the chassis.
6

Optionally — uninstall the GXFPGA driver.

30 GX3700 User’s Guide

GX3701 Connectors

These connectors exist only with the GX3701 daughter board card mounted on the GX3700/GX3700e.

Connector Description

J1 FLEX I/O differential channels 1-32 or single ended 1-64
J2 FLEX I/O channels 33-64

J3 FLEX I/O channels 65-96

J4 FLEX 1/O channels 97-128

Table 3-1: GX3701 Connectors

[
N

MARVIN TEST
SOLUTIONS
)

i 3I0

J4

e

l ‘
——

—

(& o
\ S

J3

-
G
—

Figure 3-4: GX3701e Connectors J1-J4

MARVIN TEST
SOLUTIONS

(& o
V
.

Figure 3-5: GX3701 Connectors J1-J4

Connections to the GX3700/GX3701 may be made with 68-pin VHDCI male plug connector. Shielded cables with
matching connectors are available from Marvin Test Solutions.

Installation and Connections 31

The following section describes J1-J4 connectors.

GX3701 J1 - Flex I/0O Connector

Pin Function Pin Function Pin Function Pin Function

1 Flex 11O 1P 18 Flex I/O 18P 35 Flex /O 1IN 52 Flex 1/0 18N
2 Flex 1/0 2P 19 Flex I/O 19P 36 Flex I/0 2N 53 Flex 1/0 19N
3 Flex 1/0 3P 20 Flex I/O 20P 37 Flex 1/0 3N 54 Flex 1/0 20N
4 Flex I/O 4P 21 Flex I/O 21P 38 Flex I/0 4N 55 Flex 1/0 21N
5 Flex I/O 5P 22 Flex I/O 22P 39 Flex /O 5N 56 Flex 1/0 22N
6 Flex 1/0 6P 23 Flex I/O 23P 40 Flex I/0 6N 57 Flex 1/0 23N
7 Flex 110 7P 24 Flex I/O 24P 41 Flex /O 7N 58 Flex 1/0 24N
8 Flex 1/0O 8P 25 Flex I/O 25P 42 Flex 1/0 8N 59 Flex 1/0 25N
9 Flex I/0 9P 26 Flex I/O 26P 43 Flex /O 9N 60 Flex 1/0 26N
10 Flex 1/0 10P 27 Flex 1/0 27P 44 Flex 1/0 10N 61 Flex 1/0 27N
11 Diff Clock InputP | 28 Flex 1/0 28P 45 Diff Clock InputN | 62 Flex 1/0 28N
12 Flex 1/0 12P 29 Flex 1/0 29P 46 Flex 1/0 12N 63 Flex 1/0 29N
13 Diff Clock InputP | 30 Flex 1/0 30P 47 Diff Clock InputN | 64 Flex 1/0 30N
14 Flex 1/0O 14P 31 Flex 1/0 31P 48 Flex 1/0 14N GND | 65 Flex 1/0 31N
15 Flex 1/0 15P 32 Flex 1/0 32P 49 Flex 1/0 15N 66 Flex 1/0 32N
16 Flex 1/0 16P 33 User 3.3V 50 Flex 1/0 16N 67 User 3.3V
17 Flex 1/0 17P 34 GND 51 Flex 1/0 17N GND | 68 GND

Table 3-2: GX3701 J1 Flex 10 Pin Out
P: positive differential 1/O signal (e.g. Flex 1/0 1P)
N: negative differential 1/O signal (e.g. Flex 1/0 1N)
Diff Clock Input: Dedicated differential clock inputs.

32 GX3700 User’s Guide

GX3701 J2 - Flex I/0 Connector

Pin # | Function Pin # Function Pin # Function Pin # Function
1 Flex I/0 33P 18 Flex I/O 42N 35 GND 52 GND
2 Flex 1/O 34N 19 Flex I/0O 41N 36 GND 53 GND
3 Flex 1/0 33N 20 Flex I/O 42P 37 GND 54 GND
4 Flex I/O 34P 21 Flex 1/0 53 38 GND 55 GND
5 Flex I/O 35P 22 Flex 1/0 54 39 GND 56 GND
6 Flex 1/0 36N 23 Flex 1/0 55 40 GND 57 GND
7 Flex I/0 35N 24 Flex 1/0O 56 41 GND 58 GND
8 Flex 1/O 36P 25 Flex 1/O 57 42 GND 59 GND
9 Flex I/O 37P 26 Flex 1/0O 58 43 GND 60 GND
10 Flex 1/0 38N 27 Flex 1/0 59 44 GND 61 GND
11 Flex 1/0 37N 28 Flex 1/0 60 45 GND 62 GND
12 Flex 1/0O 38P 29 Flex 1/0 61 46 GND 63 GND
13 Flex 1/0 39P 30 Flex 1/0 62 47 GND 64 GND
14 Flex 1/0 40N 31 Flex 1/0 63 48 GND 65 GND
15 Flex 1/0 39N 32 Flex 1/0 64 49 GND 66 GND
16 Flex 1/0 40P 33 User 3.3V 50 GND 67 User 3.3V
17 Flex 1/0 41P 34 GND 51 GND 68 GND

Table 3-3: GX3701 J2 Flex 10 Pin Out
P: positive differential 1/O signal (e.g. Flex 1/0 1P)
N: negative differential 1/O signal (e.g. Flex 1/0 1N)

Installation and Connections 33

GX3701 J3 - Flex I/0 Connector

Pin# Function Pin# Function Pin# Function Pin# Function
1 Flex 1/0O 65 18 Flex 1/0O 82 35 GND 52 GND

2 Flex 1/0O 66 19 Flex 1/0O 83 36 GND 53 GND

3 Flex 1/O 67 20 Flex 1/0 84 37 GND 54 GND

4 Flex 1/0O 68 21 Flex 1/0O 85 38 GND 55 GND

5 Flex 1/0O 69 22 Flex 1/0O 86 39 GND 56 GND

6 Flex 110 70 23 Flex 1/0O 87 40 GND 57 GND

7 Flex /0 71 24 Flex 1/0O 88 41 GND 58 GND

8 Flex 1/0 72 25 Flex 1/0 89 42 GND 59 GND

9 Flex 1/0 73 26 Flex 1/0 90 43 GND 60 GND

10 Flex 1/0 74 27 Flex 110 91 44 GND 61 GND

11 Flex 1/0 75 28 Flex 1/0 92 45 GND 62 GND

12 Flex 1/0 76 29 Flex 1/0 93 46 GND 63 GND

13 Flex 1/0 77 30 Flex 1/0 94 47 GND 64 GND
14 Flex 1/0 78 31 Flex 1/0 95 48 GND 65 GND

15 Flex 1/0 79 32 Flex 1/0 96 49 GND 66 GND

16 Flex 1/0 80 33 User 5V 50 GND 67 User 5V
17 Flex 1/0 81 34 GND 51 GND 68 GND

Table 3-4: GX3701 J3 Flex 10 Pin Out

34 GX3700 User’s Guide

GX3701 J4 - Flex 1/0 Connector

Pin# Function Pin# Function Pin# Function Pin# Function
1 Flex 1/0 97 18 Flex 110 114 35 GND 52 GND

2 Flex 1/0 98 19 Flex I/0 115 36 GND 53 GND

3 Flex 1/0 99 20 Flex 1/0 116 37 GND 54 GND

4 Flex 1/0 100 21 Flex 110 117 38 GND 55 GND

5 Flex I/0 101 22 Flex 1/0 118 39 GND 56 GND

6 Flex 1/0 102 23 Flex 110 119 40 GND 57 GND

7 Flex I/0 103 24 Flex 1/0 120 41 GND 58 GND

8 Flex 1/0 104 25 Flex 110 121 42 GND 59 GND

9 Flex 1/0 105 26 Flex 110 122 43 GND 60 GND
10 Flex 1/0 106 27 Flex 1/0 123 44 GND 61 GND
11 Flex 1/0 107 28 Flex 1/0 124 45 GND 62 GND
12 Flex 1/0 108 29 Flex 1/0 125 46 GND 63 GND
13 Flex 1/0 109 30 Flex 1/0 126 47 GND 64 GND
14 Flex 1/0 110 31 Flex 1/0 127 48 GND 65 GND
15 Flex 1/0 111 32 Flex 1/0 128 49 GND 66 GND
16 Flex 1/0 112 33 User 5V 50 GND 67 User 5V
17 Flex 1/0 113 34 GND 51 GND 68 GND

Table 3-5: GX3701 J4 Flex 10 Pin Out

The GX3701 J7 connector is for internal use only and is not user accessible.

Installation and Connections 35

GX3788 Connectors

These connectors exist only with the GX3788 daughter board card mounted on the GX3700/GX3700e.

Connector Description

J1i Digital Port 0 Channels 0-31 Differential

J2 Digital Port 2 Channels 0-31

J3 Analog Input Channels 0-15 and Analog Output Channels 0-7
J4 Miscellaneous.

Table 3-6: GX3788 Connectors

Connections to the GX3700/GX3788 may be made with 68-pin VHDCI male plug connector. Shielded cables with

matching connectors are available from Marvin Test Solutions.
The following section describes J1-J4 connectors:
GX3788 J1 — Flex I1/0 Bank A Connector

This connector has 31 differential channels (P used for Positive, N for Negative pins).

Pin Function Pi Function Pi Function Function

1 DIO Port 0 Ch OP 18 DIO Port0Ch 17P | 35 DIO Port 0 Ch ON DIO Port 0 Ch 17N
2 DIO Port0 Ch 1P 19 DIO Port0Ch 18P | 36 DIO Port 0 Ch 1IN DIO Port 0 Ch 18N
3 DIO Port 0 Ch 2P 20 DIO Port 0 Ch 19P | 37 DIO Port 0 Ch 2N DIO Port 0 Ch 19N
4 DIO Port 0 Ch 3P 21 DIO Port 0 Ch 20P | 38 DIO Port 0 Ch 3N DIO Port 0 Ch 20N
5 DIO Port 0 Ch 4P 22 DIO Port0 Ch 21P | 39 DIO Port 0 Ch 4N DIO Port 0 Ch 21N
6 DIO Port 0 Ch 5P 23 DIO Port 0 Ch 22P | 40 DIO Port 0 Ch 5N DIO Port 0 Ch 22N
7 DIO Port 0 Ch 6P 24 DIO Port0 Ch 23P | 41 DIO Port 0 Ch 6N DIO Port 0 Ch 23N
8 DIO Port0 Ch 7P 25 DIO Port 0 Ch 24P | 42 DIO Port 0 Ch 7N DIO Port 0 Ch 24N
9 DIO Port 0 Ch 8P 26 DIO Port 0 Ch 25P | 43 DIO Port 0 Ch 8N DIO Port 0 Ch 25N

OO | |0 |0 |0 |0 |e|o|o|jor|jo|jor|ol|oT|o1 |01 74

10 DIO Port 0 Ch 9P 27 | DIOPort0Ch26P | 44 | DIO Port 0 Ch 9N DIO Port 0 Ch 26N
11 DIO Port0 Ch 10P | 28 | DIO Port0 Ch 27P | 45 | DIO Port 0 Ch 10N DIO Port 0 Ch 27N
12 DIO Port0Ch 11P | 29 | DIO Port0 Ch28P | 46 | DIO Port 0 Ch 11N DIO Port 0 Ch 28N
13 DIO Port0 Ch 12P | 30 | DIO Port0 Ch 29P | 47 | DIO Port 0 Ch 12N DIO Port 0 Ch 29N
14 DIO Port0Ch 13P | 31 | DIO Port0 Ch 30P | 48 | DIO Port 0 Ch 13N DIO Port 0 Ch 30N
15 DIO Port0 Ch 14P | 32 | DIO Port0 Ch 31P | 49 | DIO Port 0 Ch 14N DIO Port 0 Ch 31N
16 DIO Port 0 Ch 15P | 33 | User 3.3V 50 | DIO Port 0 Ch 15N User 3.3V

17 DIO Port0 Ch 16P | 34 | GND 51 | DIO Port 0 Ch 16N GND

Table 3-7: J1 Flex 10 Bank A Pin Out

36 GX3700 User’s Guide

GX3788 J2 - Flex 1/0 Bank D Connector

Pin Function Pin Function Pin # Function Pin # Function
1 DIO Port2Ch 0 18 DIOPort2Ch17 | 35 GND 52 GND
2 DIO Port2Ch1 19 DIOPort2Ch18 | 36 GND 53 GND
3 DIO Port2 Ch 2 20 DIOPort2Ch19 | 37 GND 54 GND
4 DIO Port2Ch 3 21 DIOPort2Ch20 | 38 GND 55 GND
5 DIO Port2Ch 4 22 DIOPort2Ch21 | 39 GND 56 GND
6 DIO Port2 Ch5 23 DIO Port2Ch22 | 40 GND 57 GND
7 DIO Port2 Ch 6 24 DIOPort2Ch23 | 41 GND 58 GND
8 DIO Port2Ch7 25 DIOPort2Ch24 | 42 GND 59 GND
9 DIO Port2Ch 8 26 DIOPort2Ch25 | 43 GND 60 GND
10 DIO Port2 Ch 9 27 DIOPort2Ch26 | 44 GND 61 GND
11 DIO Port2Ch 10 | 28 DIO Port2Ch27 | 45 GND 62 GND
12 DIOPort2Ch1l | 29 DIOPort2Ch28 | 46 GND 63 GND
13 DIOPort2Ch12 | 30 DIOPort2Ch29 | 47 GND 64 GND
14 DIOPort2Ch13 | 31 DIOPort2Ch30 | 48 GND 65 GND
15 DIOPort2Ch14 | 32 DIOPort2Ch31 | 49 GND 66 GND
16 DIO Port2Ch15 | 33 User 3.3V 50 GND 67 User 3.3V
17 DIOPort2Ch16 | 34 GND 51 GND 68 GND

Table 3-8: J2 Flex 10 Bank D Pin Out

Installation and Connections 37

GX3788 J3 - Flex I1/0 Bank B Connector

Pin# Function Pin# Function Pin# Function Pin# Function
1 Analog In 0 18 Analog In 15 35 CcoM1 52 COM2

2 Analog In 1 19 NC 36 COM1 53 AGND

3 Analog In 2 20 NC 37 COM1 54 AGND

4 Analog In 3 21 CAL_V 38 COM1 55 CAL_GND
5 Analog In 4 22 NC 39 COM1 56 NC

6 Analog In 5 23 NC 40 COM1 57 GND

7 Analog In 6 24 NC 41 COM1 58 GND

8 Analog In7 25 Analog Out0 | 42 CcoM1 59 AGND

9 NC 26 Analog Out1 | 43 AGND 60 AGND
10 NC 27 Analog Out2 | 44 AGND 61 AGND
11 Analog In 8 28 Analog Out3 | 45 COM2 62 AGND
12 Analog In 9 29 Analog Out4 | 46 COM2 63 AGND
13 Analog In 10 30 Analog Out5 | 47 COM2 64 AGND
14 Analog In 11 31 Analog Out6 | 48 COM2 65 AGND
15 Analog In 12 32 AnalogOut7 | 49 COM2 66 AGND
16 Analog In 13 33 User 5V 50 COM2 67 User 5V
17 Analog In 14 34 AGND 51 COM2 68 AGND

Table 3-9: J3 Flex 10 Bank B Pin Out

38 GX3700 User’s Guide

GX3788 J4 - Flex 1/0 Bank C Connector

Pin# Function Pin# Function Pin# Function Pin# Function
1 NC 18 GND 35 GND 52 GND
2 NC 19 NC 36 GND 53 GND
3 NC 20 NC 37 GND 54 GND
4 NC 21 NC 38 GND 55 GND
5 NC 22 NC 39 GND 56 GND
6 NC 23 NC 40 GND 57 GND
7 NC 24 NC 41 GND 58 GND
8 NC 25 NC 42 GND 59 GND
9 NC 26 NC 43 GND 60 GND
10 NC 27 NC 44 GND 61 GND
11 NC 28 NC 45 GND 62 GND
12 NC 29 NC 46 GND 63 GND
13 NC 30 NC 47 GND 64 GND
14 NC 31 NC 48 GND 65 GND
15 NC 32 NC 49 GND 66 GND
16 NC 33 User 5V 50 GND 67 User 5V
17 NC 34 GND 51 GND 68 GND

Table 3-10: J4 Flex 10 Bank C Pin Out

Installation and Connections 39

Jumpers

Jumpers Description

JP2 Reserved. Normally disconnected.

JP3 Connect 3.3V to VCCIO for customer programmable FPGA. Normally connected.
JP4 Connect 2.5V to VCCIO for customer programmable FPGA. Normally disconnected.
JP5 Connect 1.2V to VCCIO for customer programmable FPGA. Normally disconnected.

Table 3-11: GX3700 Jumpers
Figure 3-6 shows GX3700 board JP2, JP3, JP4 and JP5 jumpers (in red rectangular):

2

Figure 3-6: GX3700 — Front View Jumpers JP3-JP5 and JP2

40 GX3700 User's Guide

[

'OU| ‘SLUSYSAS 359 UIAIDN|

ol
o
©
o
o
o
a
o

Figure 3-7: GX3700e — Front View Jumpers JP3-JP5 and JP2

Installation and Connections 41

5y JP5|, ., _C28

© &=h)

S

Figure 3-8: GX3700/GX3700e Jumpers JP3-JP5

Figure 3-9 shows GX3700 board JP2 Jumper:

|

(0)]
| EM)
1 Nil{l il
LRI
»

“‘|<J
e

00
to—h
{

Y
L

e HLILILILINN

;b r:tr:mj;

|

N
i
11}

YR,

(o)}
el TR

-
»
.
M
.

.
®
-

Figure 3-9: GX3700/GX3700e Jumper JP2

42 GX3700 User's Guide

Programming the Board 43

Chapter 4 - Programming the Board

This chapter contains information about how to program the GX3700 board using the GXFPGA driver.

The GXFPGA driver contains functions to initialize, reset, and control the board. A brief description of the
functions, as well as how and when to use them, is included in this chapter.

The GXFPGA driver supports many development tools. Using these tools with the driver is described in this
chapter. In addition, the GXFPGA directory contains examples written for these development tools.

The GXFPGA Driver

The GXFPGA DLL driver is provided with support for 32 bit Windows (GXFPGA.DLL) and 64 bit Windows
(GXFPGAG4.DLL). Additional drivers are provided for other operating systems such as Linux and LabVIEW Real-
Time, see the readme file for more information regarding these drivers. The 32-bit DLL is used with 32 bit
applications running under Windows 32 or 64 bit and the 64-bit DLL runs on Windows 64 bit editions. The DLLs
uses device driver (HW provided by Marvin Test Solutions or VISA provided by a third-party vendor) to access the
board resources. The device driver HW includes HW.SYS and HW64.SYSS is installed by the GXFPGA setup
program and is shared by other Marvin Test Solutions products (ATEasy, GTDIO, etc.).

The DLLs can be used with various development tools such as Microsoft Visual C++, Borland C++ Builder,
Microsoft Visual Basic, Borland Pascal or Delphi, ATEasy and more. The following paragraphs describe how to
create an application that uses the driver with various development tools. Refer to the paragraph describing the
specific development tool for more information.

Programming Using C/C++ Tools

The following steps are required to use the GXFPGA driver with C/C++ development tools:

e Include the GXFPGA.h header file in the C/C++ source file that uses the GXFPGA function. This header
file is used for all driver types. The file contains function prototypes and constant declarations to be used by
the compiler for the application.

e Add the required .LIB file to the projects. This can be import library GXFPGA.lib and GXFPGAG64.lib (for
64 bit applications) for Microsoft Visual C++ and GXFPGABC.lib for Borland C++. Windows based
applications that explicitly load the DLL by calling the Windows LoadLibrary() API should not include
the .LIB file in the project.

e Add code to call the GXFPGA as required by the application.
e Build the project.

¢ Run, test, and debug the application.

Programming Using Visual Basic and Visual Basic .NET

To use the driver with Visual Basic 4.0 or above (for 32-bit applications), the user must include the GXFPGA .bas to
the project. The file can be loaded using Add File from the Visual Basic File menu. The GXFPGA.bas contains
function declarations for the DLL driver. If you are using Visual Basic .NET — use the GXFPGA.vb.

Programming Using Pascal/Delphi

To use the driver with Borland Pascal or Delphi, the user must include the GXFPGA.pas to the project. The
GXFPGA .pas file contains a unit with function prototypes for the DLL functions. Include the GXFPGA unit in the
uses statement before making calls to the GXFPGA functions.

44 GX3700 User's Guide

Programming GXFPGA Boards Using ATEasy®

The GXFPGA package is supplied with a separate ATEasy driver for each board types. For example, the GX3700 is
supplied with GXFPGA.drv ATEasy driver. The ATEasy driver uses the GXFPGA.dII to program the board. In
addition, each driver is supplied with an example that contains a program and a system file pre-configured with the
ATEasy driver. Use the driver shortcut property page from the System Drivers sub-module to change the PXI HW
slot number or VISA resource string before attempting to run the example.

Using commands declared in the ATEasy driver are easier to use than using the DLL functions directly. The driver
commands will also generate exceptions that allow the ATEasy application to trap errors without checking the status
code returned by the DLL function after each function call.

The ATEasy driver contains commands that are similar to the DLL functions in name and parameters, with the
following exceptions:

e The nHandle parameter is omitted. The driver handles this parameter automatically. ATEasy uses driver
logical names instead i.e. FPGA1 for GX3700.

e The nStatus parameter was omitted. Use the Get Status commands instead of checking the status. After
calling a DLL function the ATEasy driver will check the returned status and will call the error statement (in
case of an error status) to generate exception that can be easily trapped by the application using the
OnError module event or using the try-catch statement.

Some ATEasy drivers contain additional commands to permit easier access to the board features. For example,
parameters for a function may be omitted by using a command item instead of typing the parameter value. The
commands are self-documented. Their syntax is similar to English. In addition, you may generate the commands
from the code editor context menu or by using the ATEasy’s code completion feature instead of typing them
directly.

Programming Using LabVIEW and LabVIEW/Real Time

To use the driver with LabVIEW use the provided lab view library GXFPGA.IIb. The library is located in the
GXFPGA folder. An example for LabView is also provided in the Examples folder. A DLL located in the
LabViewRT folder can be used for deployment with LabVVIEW/Real-Time.

Using and Programming under Linux

Marvin Test Solutions provides a separate software package GtLinux with Linux driver (Marvin Test Solutions
Drivers Pack for Linux). The software package can be downloaded from the Marvin Test Solutions website. See the
ReadMe.txt in that package for more information regarding using and programming the driver under Linux.

Programming the Board 45

Using the GXFPGA driver functions

The following paragraphs describe the steps required to program the boards.
Initialization, HW Slot Numbers and VISA Resource

The GXFPGA driver supports two device drivers HW and VISA which are used to initialize, identify and control the
board. The user can use the GxFpgalnitialize to initialize the board s driver using HW and GxFpgalnitializeVisa
to initialize using VISA. The following describes the two different methods used to initialize:

1. Marvin Test Solutions’s HW — This is the default device driver that is installed by the GXFPGA driver. To
initialize and control the board using the HW use the GxFpgalnitialize(nSlot, pnHandle, pnStatus) function.
The function initializes the driver for the board at the specified PXI slot number (nSlot) and returns boards
handle. The PXI/PCI Explorer applet in the Windows Control Panel displays the PXI slot assignments. You
can specify the nSlot parameter in the following way:

e A combination of chassis number (chassis # x 256) with the chassis slot number, e.g. 0x105 for chassis
1 and slot 5. The chassis number can be set by the PXI/PCI Explorer applet.

e Legacy nSlot is used by earlier versions of HW/VISA. The slot number contains no chassis number and
can be changed using the PXI/PCI Explorer applet: 23 in this example.

& PXI/PCI Explorer

Slots | status |

=™ PX| System <Extemal PC>
(- Chassis 1 <GX7000> <S/N : 54>
G-/ Slot 1 <System Slot>
E]@ Slot 3 - GX7400 Dual-Output Programmable Power Supply Board
: - VISA Resource = PXI6::14::INSTR [Status=Device is working properly]
“ A nSlot = 0x103

Device Settings
: PXI Settings
@ Slot 9 - GX5961/4 Digital I/O Timing / Sync with Pin Electronics and PMU Boarc

#-(5) Slot 15 - GX2065 Digital Muttimeter Board

Display Options ... I Reset Chassis List | Scan for New Devices I Save I

Leaacy nSlot : |3 L‘

Figure 4-1: PXI/PCI Explorer

2. VISA —This is a third-party library usually supplied by National Instruments (NI-VISA). You must ensure that
the VISA installed supports PXI and PCI devices (not all VISA providers supports PXI/PCI). GXFPGA setup

46 GX3700 User's Guide

installs a VISA compatible driver for the GXFPGA board in-order to be recognized by the VISA provider. Use
the GXFPGA function GxFpgalnitializeVisa (szVisaResource, pnHandle, pnStatus) to initialize the driver’s
board using VISA. The first argument szVisaResource is a string that is displayed by the VISA resource
manager such as NI Measurement and Automation (NI_MAX). It is also displayed by Marvin Test Solutions
PXI/PCI Explorer as shown in the prior figure. The VISA resource string can be specified in several ways as
the following examples demonstrate:

e Using chassis, slot: “PXI10::CHASSIS1::SLOTS5”
e Using the PCI Bus/Device combination: “PXI9::13::INSTR” (bus 9, device 9).
e Using the alias: for example, “COUNTERI1”. Use the PXI/PCI Explorer to set the device alias.

Information about VISA is available at http://www.pxisa.org.

Board Handle

The GxFpgalnitialize and the GxFpgalnitializeVisa functions return a handle that is required by other driver
functions in order to program the board. This handle is usually saved in the program as a global variable for later use
when calling other functions. The initialize functions do not change the state of the board or its settings.

Reset

The Reset function sets the board to a known default state. A reset is usually performed after the board is initialized.
See the Function Reference for more information regarding the reset function.

Error Handling

All the GXFPGA functions returns status - pnStatus - in the last parameter. This parameter can be later used for
error handling. The status is zero for success status or less than zero for errors. When the status is error, the program
can call the GxFpgaGetErrorString function to return a string representing the error. The GxFpgaGetErrorString
reference contains possible error numbers and their associated error strings.

Driver Version

The GxFpgaGetDriverSummary function can be used to return the current GXFPGA driver version. It can be used
to differentiate between the driver versions. See the Function Reference for more information.

Programming Examples

The README.txt located on the GXFPGA folder contains a list of the GXFPGA programming examples provided
with the GXFPGA software. Examples are provided for various programming languages including C, VB.NET, VB
(6.0). ATEasy and more.

Distributing the Driver

Once the application is developed, the driver files (GXFPGA.dIl, GXFPGA64.dll and the HW device driver files)
can be shipped with the application. Typically, the GXFPGA.dII should be copied to the Windows System directory.
The HW device driver files should be installed using a special setup program HWSETUP.EXE that is provided with
GXFPGA driver files (see Marvin Test Solutions\HW folder) or a standalone setup HW.exe. Alternatively, you can
provide the GXFPGA.exe setup to be installed along with the board.

http://www.pxisa.org/

GXFPGA Schematic Entry Tutorial 47

Chapter 5 - GXFPGA Schematic Entry Tutorial

Introduction

This tutorial will go over the basic workflow to start designing and loading a FPGA configuration for the Gx3700.
The example provides creation of a project using the schematic entry design method. The “Tutorial design top
reg.doc” contains the design register map.

The tutorial contents will entail:

e Downloading and installing the FPGA design tool

e Creating a new FPGA Design project with the Stratix 11l as the target device

e Setup the pin assignment to work with the GX3700 and Stratix Il FPGA

e Use the design tool to create an example FPGA configuration

e Compile the project and generate the SVF and RPD programming files

e Loading the board with the generated programming files

e Testing the design using the Gx3700 Front Panel software and ATEasy

e The example configuration is broken down into three phases, each with a distinct function:

o Phase 1: Take two values located in PCI Registers and generate a Sum (Adder) which can then be read
through a third PCI Register.

e Phase 2: 2 to 1 multiplexer to choose between the 10 MHz Clock and the PCI Clock which will be
output on one of the Flex1O pins. The clock will be selected through a PCI Register.

e Phase 3: A simple dynamic digital sequencer with a memory depth of 32 double words (written to
through the PCI bus) driven by a PLL that continuously outputs digital patterns to the 32 Flex1O pins
on J2 connector.

e The source code for the examples in this chapter is provided in the Examples\Quartus\Gx3700 folder.

Downloading Altera Design FPGA Design Tools

The Marvin Test Solutions Gx3700 User programmable FPGA board can be designed using the free Altera Quartus
I1 Web Edition or Subscription Edition design tool. This FPGA design tool allows end users to generate fully
featured FPGA designs that can be downloaded to the Gx3700 board using the Marvin Test Solutions GXFPGA
software AP or software front panel. Other 3" party tools can also be used to design the FPGA. Before proceeding
with this tutorial, you must have Altera Quartus 11 v11.0 SP1 installed on your PC. More information about this tool
and how to download it can be found at http://www.altera.com/products/software/quartus-ii/web-edition/gts-we-
index.html.

http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html

48 GX3700 User's Guide

Create New Project

Getting Started With Quartus® Il Software

. . .
Start Designing Start Learning

Designing with Quartus ll software The audio/video interactive tutorial teaches
requires a project you the basic features of Quartus Il software

Create a New Project . .
(New Project wimr’d) Open Interactive Tutorial

Open Existing Project |

Open Recent Project:

TestProject

TestProjeciTrial

2435-100-03_Flex FPGA_Example
TestProject

Web links:

Uterature | [Training | ["Online Demos | [~ Support | @

[Don't show this screen again

Figure 5-1: Quartus Il Start Dialog

After installing Quartus Il Web Edition, start the application and select Create a new Project to start the New
Project Wizard or select File, New, New Quartus Project.

Click on Next and then select the Project Folder and enter tutorial_design_top as the project name.
Click on Next twice (skip the adding files window).
Device Selection

The next window will allow you to select the FPGA target device. Select Stratix 111 as the Family and
EP3SL50F780C3 when using the GX3700 or EP3SL70F780C3 for the GX3700e. For newer GXFPGA boards, the
device ID will be displayed in the instrument front panel About page.

Click on Next twice (skip the Specify Tools window).

A window summarizing all the choices made for the creation of this project is shown. Click on Finish.

Pin Assignment Setup

GXFPGA Schematic Entry Tutorial 49

You should now have an empty skeleton project loaded in Quartus 11. Before you can get started on the FPGA
design, you must assign the FPGA pins distinct names so that you can reference them in your design. This can be
accomplished by running a TCL script which contains all the information necessary to configure the pin
assignments as well as settings the project to e either schematic entry or Verilog entry. These pin assignments are
unique to this Stratix 111 FPGA and the GX3700 in particular. The following table lists all the pin assignments and
their respective descriptions. The Pin Alias’s listed in the table are the pin names you will be using in your design to
reference the actual hardware pins on the FPGA.

Pin Assignments Table

Pin Alias (Node Name)

Description

Clocks

10Mhz Input. 10 MHz Reference Clock Signal from the PXI Backplane
PCIClock Input. 33 MHz PCI Bus clock or 125MHz PCI Express application clock.
RefClk Input. 80 Mhz Reference Clock onboard the GX3700
PCI Bus
Addr[2..19] Input. The PCI Address lines from the PCI bus
FDt[0..31] Bidir. PCI Data lines from the PCI bus

Input. Chip Select lines from the PCI bus.
CS[1..3] CS[1] is for FPGA registers, CS[2] is for internal SRAM, CS[3] is currently not used.
LEXT Input. External SRAM chip select. This is chip select for external SRAM on PCB.
RdEn Input. PCI Read Enable line from the PCI bus
WTrEn Input. PCI Write Enable line from the PCI bus
LREAD_ DV Output. Read data valid. This is data valid for FDt(31:0) data bus.
LUW Input. Currently not used. Upper Word.
LLW Input. Currently not used. Lower Word.
LRESET Input. Currently not used. Reset coming from PXI bridge FPGA.
PXI Bus
PxiTrig[0..7] Bidir. PXI Bus trigger signals

Output. PXI Star Trigger signal. This signal can be re-defined by the user as bi-
StarTrig directional.
PX1_LBL6 Bidir. PXI Local Bus Left 6. This is local bus according to PXle spec.
PXI_LBR6 Bidir. PXI Local Bus Right 6. This is local bus according to PXle spec.
PXle_DSTARA Input. PXle DSTAR trigger A. This is DSTAR trigger according to PXle spec.
PXle_DSTARB Input. PXle DSTAR trigger B. This is DSTAR trigger according to PXle spec.
PXle_DSTARC Output. PXle DSTAR trigger C. This is DSTAR trigger according to PXle spec.
PXIE_100M Input. PXle 100MHz clock. This is 100MHz clock according to PXle spec.
PXIE_SYNC100 Input. PXle Sync100. This is Sync100 signal according to PXle spec.
1/0

FlexIO[1..160]

Bidir. The physical 10 Channels including 4 global clock inputs (2 differential pairs).

50 GX3700 User’s Guide

External Flash

Fsm_a[1..23] Output. Address bus shared by external SRAM and flash.
Fsd[0..31] Bidir. Data bus shared by external SRAM and flash.
Flash_ce n Output. Flash chip enable.

Flash_oe n Output. Flash output enable.

Flash_we n Output. Flash write enable.

Flash_reset n

Output. Flash chip reset

Flash_byte n

Output. Flash byte/word select.

Flash_busy n

Input. Flash busy

External SRAM

Sram_be n[0..3]

Output. External SRAM byte enable.

Sram_ce_n Output. External SRAM chip select.
Sram_oe_n Output. External SRAM output enable.
Sram_we_n Output. External SRAM write enable.

RX DMA FIFO I/F

RX_DMA_DATI[0..31]

Input. Receive DMA data coming from PC host.

RX_DMA_DV

Input. Receive DMA data valid.

RX_DMA_FIFOFULL

Output. Receive DMA FIFO full. This will throttle data from PC host.

RX_DMA_SP1

Output. Spare. Currently not used.

RX_DMA_SP2

Output. Spare. Currently not used.

TXDMA FIFO I/F

TX_DMA_DATI0..31]

Output. Transmit DMA data from memory going to PC host.

TX_DMA_DV

Output. Transmit DMA data valid.

TX_DMA_FIFOEMPTY

Output. Transmit DMA FIFO empty. When empty and is sending data to PC host, the
DMA engine in PXI bridge FPGA will assert FIFO read enable TX_DMA_FIFO_RD.

TX_DMA _FIFO_RD

Input. Transmit DMA FIFO read enable.

Misc

Spare[0..7] Bidir. Do Not Use. Spares connected to PXI bridge FPGA.
IRQ Output. Interrupt output pin going to PXI bridge FPGA
IRQ = 1 means interrupt will be generated to PC host.
IRQ = 0 means no interrupt.
FSpr[0..3] Bidir. Spare Signals connected to Expansion Board
MCiIr Input. FPGA Master Clear, Active High
TP[0..5] Bidir. Connected to test header J7 on the GX3700 PCB

ACTIVE_LED_N

Output. Active LED. Connect to LD1 LED on board. ‘0’ = LED on, ‘1’ = LED off.

Table 5-1: Pin Assignments Table

GXFPGA Schematic Entry Tutorial 51

Schematic entry project

In order to configure the project as schematic entry and configure the pin assignment the TCL configuration script
should be added to the project. To add the script to the project, click on Project | Add/Remove Files in Project...

In the dialog box, click on the ... button and browse for GX3700Schem.tcl file in the “C:\Program Files\Marvin Test
Solutions\GxFpga\” folder. On some systems, it is recommended to move the desired TCL file to your project’s
source location prior to adding it to the project. Click Open and then the Add button.

¢ Settings - tuterial_design_top ;lglﬁl
Category:
- Libraries Select the design files you want to indude in the project. Click Add All to add all design files in the project
[El- Operating Settings and Conditions directory to the project.
i Voltage

- Temperature ’ .
[z} Compilation Process Settings Eile name: I - fGx 37005 chem. tcl _I Add |
- Early Timing Estimate
- Incremental Compilation File Name |T5rpe ILibrary | Design Entry/Synthesis Tool HOL Version I Add Al |
- Physical Synthesis Optimizations -
[=H EDA Tool Settings
- Design Entry/Synthesis
- Simulation
- Timing Analysis Up |

-~ Formal Verification

- Board-Level —
[ZH Analysis & Synthesis Settings = |
- VHDL Input :
- Verilog HOL Input Broperties |

- Default Parameters

- Fitter Settings

- TimeQuest Timing Analyzer

- Aszembler

- Design Assistant

- SignalTap II Logic Analyzer

- Logic Analyzer Interface

- PowerPlay Power Analyzer Settings
- 55N Analyzer

!

Remove

W Buy Software I CK | Cancel Apply Help

Figure 5-2: Add Tcl Script to Project

Then click on Tools | TCL Scripts ... Select the configuration script file, GX3700Schem.tcl and click on Run. This
will configure your FPGA pin assignments.

Note: The TCL file will automatically add all the source files needed for the tutorial design to the Quartus Il project.

You can view the pin assignments by running the Pin Planner application which is found in the Tasks list as
highlighted below:

52 GX3700 User’s Guide

Tasks) & X
Flow: |Compilation |
Task & -

« [E M Compile Design

v Bl B Analysis & Synthesis

-----] Edit Settings

----- EE View Report

[R P Analysis & Elaboration
[+ Partition Merge
-] Netlist Viewers

[+ Design Assistant (Post-Mapping)
[} 1/0 Assignment Analysis

[} Eady Timing Estimate

e - Fitter (Place & Route)

----- [] Edi Settings

----- EE View Report

----- @ Chip Planner {Floorplan and Chip Editor)
------ @ Technology Map Viewer (Post-Fitting)

[} Design Assistant {Post-Fitting) -
-----] Edit Settings
...... E View Report
W (- Assembler (Generate programming files) -
«| | »

Figure 5-3: Task Flow

The Pin Planner will display a matrix of the physical FPGA pins and their mapped names as well as the 1/O standard
supported by the pin. These mapped names are used in the FPGA design, as wire names and 1/O pins, to connect to
the physical connections of the FPGA.

GXFPGA Schematic Entry Tutorial 53

Creating Design File with Schematic Entry

At this point you will have successfully created an FPGA design based on the source codes provided. This section
will walk you through the steps of creating your own source file using schematic entry.

Note: There is more than one way to accomplish the following designs.

Phase 1: Creating the FPGA design - 32 bit Full Adder

This design will take two double word (32 bit) values, located in the first two double words in the Register space
(byte offset 0x0 and 0x4), and add them together. The sum of the two values will be immediately output to the third
double word in the Register space (byte offset 0x8).

Components Used
1x 32 bit Full Adder 1x Decoder

result 31..(]:

2x D Flip Flops

B
[PRN |

CLRN i
nsts © L

2x AND Gate 1x Constant
SARDZTTT LPM_CONSTANT |

F— : = result]l
E D_‘ pavalue) =
: H linsty2

nstl1

Figure 5-4: Phase 1 Adder Components

54 GX3700 User's Guide

Schematic view
In order to open the schematic view, click on File menu, and then New the following dialog appears.

Select Block Diagram/Schematic File:

b Mew Quartus 1T Project
[= Design Files
- AHOL File
& Clock Diagram
- EDIF File
- Qgys System File
- State Machine File
- Systemverilog HOL File
- Tl Script File
- YHDL File
- Vierilog HOL File
[=I- Memary Files
i Hexadedmal (Intel-Format) File
Memory Initialization File
[Verification/Debugging Files
- In-System Sources and Probes File
- Logic Analyzer Interface File
- GignalTap II Logic Analyzer File
[=H Other Files
- AHDL Include File
- Block Symbaol File
- Chain Description File
- Synopsys Design Constraints File
- Text File

[Schematic File

b

Ok Cancel Help |
A

Figure 5-5: Open Schematic view Dialog Box

Design

GXFPGA Schematic Entry Tutorial 55

First start with creating the circuitry required to decode the PCI Address when data is to be written from the PC to
the FPGA. This circuit will be used in all three functions of this example project. The signals required for PCI Write
access will be the PCI Clock, Write Enable, Chip Select 1, and some PCI Address lines. The PCI Address lines 5
to 2 will be fed to a decoder which will generate a 32-bit value, and the result will be ANDed with the Chip Select 1
bit. Each Chip Select bit represents a certain PCI BAR access (GX3700 has two bars, memory and register
memories). Bit 1 represents BARL of the PCI memory space (bit 2 for BAR2). BARL1 is the general-purpose Control
Register BAR for the GX3700. The results of the AND operation will be once again ANDed to the Write Enable

PCI signal.

Double click on the blank space in the schematic view and select Ipm_decode from the Megafunction, Gates

directory.

Libraries:

& Project
=] B c:/altera/90sp2/quartus/libraried
FE megafunctions
HE arithmetic
EE qgates

-EF busmus

- Ipm_and
- Ipm_bustri
- Ipm_clshift
- |pm_constant

][]
ey Ipm_iny

- Ipm_mux

¢ Ipm_or

¢ Ipm_xor

-EF mux

#HE 10

HE storage

3 others

I primitives

< |
Name:

l Ipm_decode _J

I~ Repeatinsert mode
™ Insert symbol as block
™ Launch Megaw/izard Plug-n

Megawizard Plug-in Manager... I

0K Cancel |

— clken
il clock
~—aclr

_ data[] i
i |enable eqll .-..

Figure 5-6: Symbol Insert Dialog Box

Make sure the Launch MegaWizard Plug-In checkbox is unchecked.

Click OK and place the symbol on the blank design document.

56 GX3700 User’s Guide

Now that the Decoder has been placed, some of its parameters have to be set. Right click on the Decoder symbol and
select Properties. Click on the Parameters tab. Set the Width and Decodes properties as shown below:

Symbol Properties N X|

‘General | Pots Parameters IFonnat]

— Parameter
Name: LPM DECODES ﬂ Add |
Setting: |2°LPM_WIDTH ~] Delete |

Type: I _‘j

Description: lNumber of decoded outputs

Existing parameter settings:

MName

LPM_DECODES 2°LPM_WIDTH MNumber ¢

LPM_PIPELINE Output latency in clock cycles - requires use of ¢
LPM_WIDTH 5 Width of input, any integer > 0

| | i
[ok | cancel |

Figure 5-7: Decoder Properties

Click OK when done. Place another symbol on the design by double clicking on the design document, and selecting
Input Pin from Primitives, Pin, Input. After placing the input pin symbol, rename it to Addr[6..2]. The symbol
will now represent 5 PCI address lines that will be used to communicate with the PC.

GXFPGA Schematic Entry Tutorial 57

Also place 2 AND gates after the Decoder and a few more input pins with the appropriate names DecAddr, Sel and
WE as the following figure shows:

Parameter Value ECIClock
LPM_DECODES |2*LPM_WIDTH e—
LPN_PIPELINE
.. LPM —]J'\”DTH E
LPM_DECODE
g 0118]
i enable eqll

Figure 5-8: PCI Address Decoder Circuit

Note: To wire several signals together (as a bus), such as Addr[6..2] or Sel[31..0], use the Bus Wiring Tool
highlighted in red below. We use two D-Flip-Flops to clean up the signal going into our design before we use it.

|

SN 100 >

Figure 5-9: Bus Wiring Tool

Now that the PCI address decoder circuit is complete, we can feed the appropriate bits from the WE bus to D Flip
Flops that will store data clocked in from the PCI data lines. For example, the first double word in PCI memory
(representing the first number to be summed) will be written to a D Flip Flop with its enable line tied to WE[0] (the
first bit in the WE bus). The second double word to be added will be written to another D Flip Flop with its enable
line tied to WE[1]. Finally, the PCI Clock signal (33Mhz) will be used as the clock source of the D Flip Flops. Note
that each bit of the Sel and WE busses represent a consecutive double word address (bit 0 corresponds with byte 0,
bit 1 corresponds with byte 4, bit 2 corresponds with byte 8 etc.)

Place two D Flips Flops (located at primitives, storage, dffe) and an input pin named PCIClock. We will leave the
D Flip Flops input lines (D) disconnected for now. Eventually the PCI data lines will drive these inputs.

Wire the output of the AND gate to D Flips Flops as shown below.

58 GX3700 User’s Guide

EUR

;--l-jéllj-lu-l-:k:--“““-“““-I-NF;U:“- . : f}

o FEC]}
i FRH

o e

—
t WEA] | |Clew |
AN nsts O

.h_

—|

nst9_

Sel[31..0]

r_—-\\ . WE[31.0]
—__/
inst3 i

Figure 5-10: D Flip Flops
The D Flips Flops will feed a 32-bit adder and the resulting summation will be wired to the PCI data lines so that the
PC can read the result.

The 32-bit adder will be placed onto the design using the MegaFunction wizard tool. This tool will customize a
component by allowing you to make selections through a wizard.

Double click on the designh window and navigate to megafunctions, arithmetic, Ipm_add_sub. Make sure the
Launch Megafunctions Wizard checkbox is selected and click OK. You will see a dialog box like the following:

GXFPGA Schematic Entry Tutorial 59

MegaWizard Plug-In Manager|[page 2c] il 5'

Selected Megafunctions: Which type of output file do you want to create?

|LPM_ADD_SUB * SHDL
" VHDL
" Verilog HDL
What name do you want for the output file? Browse... |

[C: \altera\T estProject Trial\Simpleddded

MNate: To compile a project successfully in the Quartus |l software, your
design files must be in the project directory, in the global user libraries
specified in the Options dialog box [T ools menu), or a user library specified
in the User Libraries page of the Settings dialog box [Assighments menu).

Your current user library directories are:

[~ Don't ask me for an output file name or the output file format again.
In future, name output files automatically and use the current output file format.

[Note: You can turn the Block Editor's auto naming and auto format selection
on and off with the Options command in the Tools menu.]

Cancel I < Back I MNext > I Finish |

Figure 5-11: Adder Wizard

Name the output file SimpleAdder and make sure the path is the same as your project. Click Next and enter 32 as
the data width.

60 GX3700 User’s Guide

MegaWizard Plug-In Manager - LPM_ADD_SUB [page 3 of 8]

Currently selected device family: ledone 11 v I
' Match project/default

SimpleAdder2
Jdataa[31..0] r~

datab[31..0]

How wide should the 'dataa’ and 'datab’ input buses be? |32 | bits

Which operating mode do you want for the adder/subtractor?
(s Addition only
i Subtraction only
i Create an 'add_sub' input port to allow me to do both
[1 adds; 0 subtracts]

Resource Usage
32 lut

| Cancel || <Back || Next> || Evish |

Figure 5-12: Adder Wizard 2

Click Next through the rest of the wizard and keep the default choices. Finally, the dialog box will show the newly
created design files that will be included in your project. Click Finish and place the newly created Adder in your
design.

GXFPGA Schematic Entry Tutorial 61

Wire the adder to the flip flops and add an AND gate, Read Enable pin, and tristate buffer as the following shows:

RE_EXT[Z]
S—
DRI : -
—e o simpleadder
— |
e | Er?hm dataa31..0] \‘FESUII[BL_D] TR RN e
s QT | _ldatab[31 O] b PP G
sree
e inst?
>
WEM: | ciem
insts &)

Figure 5-13: Adder Circuit

Note that we are using the FDt[31..0] PCI data lines as bidirectional pins since we will be reading and writing to the
PCI bus. The Tristate buffer is used to select whether the Adder will be driving the PCI Data lines or not. The
Tristate buffer is controlled by the 3 bit of the decoded PCI Address ANDed with the Read Enable line. When both
signals are high (Sel[2] and RdEN) it indicates that the PCI Bus is expecting the 3" double word to be written to the
PCI bus. In our case, this means the 32-bit result from the Adder.

Before moving on we must first extend the RdEn to 2 PCI clock cycles by adding a small circuit as demonstrated
below:

RdEn_Extend

ng

- o

Figure 5-14: RdEn to 2 PCI Circuit

We also create a Read Data Valid output pin, LREAD_DV. This comes from a D-Flipflop with the PCIClock as an
input clock and the RdEn as the input data. The D-Flipflop also creates our extender for our ReadEnable.

Since this design is created to be able to be implemented in both the 3700 and the 3700e, we need to extend our
write enable pins, WE[31..0], and read enable pins, RE[31..0], for 3 more clock cycles. Below is the circuit to do
that.

62 GX3700 User’s Guide

WE[21..0]

Figure 5-15: RE[31..0] and WE[31..0] extend Circuit

The inputs to the D Flips Flops can now be wired to the PCI data lines (FDt). We need to clean up the FDt signal as
is comes back into our circuit by adding the D-FlipFlop.

RE _EXT[2]
e
: PEN : -

4 —o Q[simpleadder

—

WET 2 dataal31..0] \result[BLD] TR T T —
finstd O ; datab[31 0] | A+B : @o—~E—— > FoiELO
.......................... s
e o
M inst7

Figure 5-16: Adder Circuit with PCI Bus Connection

Now that the design has been completed, a revision number should be added so that the end user can read it back
from the PCI bus at the 32" register double word location (byte address 0x7C).

Including a revision number constant to the design is a Marvin Test Solutions standard practice that we recommend
end users to follow. The revision constant is 32 bits long and is read as a hexadecimal number such as 0x3564A000.
The first two digits of the hexadecimal number represent the company, in this case 35 is for Marvin Test Solutions
designs. The next two digits are the design specific code, 64 in this case. And the last 4 digits, A00O, is the revision
of the design.

GXFPGA Schematic Entry Tutorial 63

A constant component needs to be placed in the design (LPM_CONSTANT). When placing this component make
sure that the “Launch MegaWizard Plug-In” selection is unchecked. After placing the component, right click on it
and select properties to set the value and width of the constant as the following figures show:

Symbol Properties I x|

‘General | Potts Parameters lFormat]

— Parameter
MName: LPM CVALUE j Add I
Setting: |3554.6.UUU L] Delete I

Type: l Hexadecimal LI

Description: |Design Revision

Existing parameter settings:

Mame Yalue Type Description
LPM_CvaLUE 35644000 Hexadecimal Design Revision

LPM_WIDTH 32 Width of output, any integer > 0

l OK I Cancel

Figure 5-17: Symbol Properties

Now place the 2 port AND gate and the tri-state buffer. You can rotate it, as shown in Figure 5-17: Symbol
Properties, by right clicking on the symbol (after placing it) and select “Rotate By Degrees | 90”.

64 GX3700 User’s Guide

RE_E XT[2]

D0 simpleadder

WEO o | dataa[31 0] \ resuitf31..0]
nste O datab[31 0] | A+B
o e

D Q inst?
EMNA
N E[1] CLEN
insts G2
RE_EXT[3]
Ipm_constant0
resuit[31..0]
inst11 ¢onstant value is B95TET008

Figure 5-18: Adder Circuit with Revision Constant

GXFPGA Schematic Entry Tutorial 65

Finally, you can change the inputs to the adder from write-only to read/write by connecting the output of the D-
Flipflops to the FDt inout pin via a tristate buffer. After adding this buffer, the complete adder circuit should appear
as below:

RE_EXT[O]

RE_EXT[Z]

simpleadder

dataa[31.0] \resurt[m..n] i g
datab[31..0] D —

PCICkck

RE_EXT[1]

RE_EXT[21] lpm_constantl

resun[31..n]§ *‘|\I\ """

Figure 5-19: Completed Adder Circuit

66 GX3700 User’s Guide

Phase 2: Creating the FPGA Design - 2to 1 Clock Mux

This design will output either the PCI Clock (33Mhz) or the 10Mhz clock to Flex I/0O Channel 65 (check the
connector tables to find the pin number) depending on what was written to the 4'" double word in the PCI register
space (byte offset OxC). A 1 will select the 10Mhz clock signal, and a 0 will select the PCI clock signal.

Components Used

1x 2 to 1 Mux 1x D Flip Flops
A . [PRN]
1B vl e

stz MULTIPLEXER | i—lea

CLEN :
NSt

Figure 5-20: Phase 2 Mux Components

Design

You will now build upon the tutorial project to add the functionality of a 2 to 1 Clock Mux. The 10Mhz clock will
be brought into the design by an input pin. The PCI Clock signal input pin is already present in the Phase 1 circuit,
so this will be reused. FlexIO[65] (10 Channel 65) will be used to output the selected clock to the outside world.

Place the 2 to 1 Mux symbol by double clicking on the design area and selecting megafuncitons others, maxplus2,
mux21.

Create three wires attached to the D, ENA(enable) and B inputs of the D Flip Flop. Name the wires FDt[0], Sel[3],
and PCIClock respectively. Note that you did not have to place new input pins to access these signals. This is due to
the fact that input pins were already created for these signals in the Phase 1 design. Therefore, you can just use
named wires to tap into the same input pins.

WEZ]

Figure 5-21: Clock Mux Circuit

FDt[0] is the first bit of the PCI data bus. This bit can either be 0 or 1, to indicate which clock source to choose.
Sel[3] is the 4! bit from the decoded PCI Address. When this bit is high, it indicates that the PCI Bus is addressing
the 4" double word (byte offset 0xC) of the Register space for the GX3700. In our case, the value of this double
word is used to select which clock is selected by our Mux.

GXFPGA Schematic Entry Tutorial 67

Phase 3: Creating the FPGA Design - 32 bit Dynamic Digital Pattern Sequencer

Components Used

1x PLL 1x 5 bit Counter
SimplePLL] " SimpleCounter
up counter| !
1> clock
gl Ojf=
. iinst@
inclk0 inclkl frequency: 10.000 MHz CU;
areset Dperation Mode: Normal locked:
Clk |Ratio | Ph (dg) | DC (%)
ol | 1/50 | 0.00 | 50.00
inst1 Cyclone I
1x 32 by 32 bit RAM 1x AND gate
datal31._0] ‘_
puidresslh Al -
L wren z :inst11 :
H o FaimmimmimmtERrEn i marninninn R @

32 Waord(s)

iwrclock
i rdclock

T hoon

[}

insts Blodk Type: AUT

Figure 5-22: Phase 3 Dynamic Digital Sequencer Components

Design

This design functions as a simple dynamic digital pattern generator. A PLL drives a Counter which iterates through
a 32-double word memory that outputs 32 bit wide digital patterns to the 1/0 Pins. The memory is loaded through
the PCI bus, allowing users to program the device with vectors through the software front panel or the DLL API.

This phase will require the use of the MegaFunction Wizard to generate all three components, PLL, RAM, and
counter. The wizard will allow you to customize the component for this particular application. The generated
component will be stored in a file (.qip) that will automatically be included in the project.

First insert the PLL component by double clicking on an empty space in the design and clicking on MegaFunction
Plug-In Manager. Choose to create a new MegaFunction variation and click Next. Then select the symbol called
ALTPLL under the 1/O folder. Name the new variation SimplePLL and click Next. The next dialog box will
prompt you for the input clock frequency. We will be using a 10Mhz reference clock source so enter 10Mhz into
this field.

68 GX3700 User’s Guide

— General
Which device speed grade will you be using?)
[Use military temperature range devices only
What is the frequency of the inclock0 input? (10.000 MHz]
[(] Setup PLL in LYDS mode Data rate

Figure 5-23: PLL Wizard Dialog Box 1

Proceed through the next few screens, with the default choices until you get to step 3 in the wizard entitled Output
Clocks. Select 50 as the division factor as shown in the following figure:

! Use this dock :
— Clock Tap Settings
Requested settings Actual settings
__ Enter output dock frequency: 100.0000000C | MHz 0 200000
{#) Enter output clock parameters:
Clock multiplication factor 11 ‘% | 1
b i << Co :
Clock division factor |50 L@' 0y 50
Clock phase shift 000 [[des 0.00
Phase shift step resolution(ps)
Clock duty cyde (%) so.00 = 50.00

More Details >>

c0: (€l. 62 (3 €4

Figure 5-24: PLL Wizard Dialog Box 2

Click Next for the rest of the windows until you get to the last window showing you the files that will be created and
then click Finish. The customized component will now be included in your project automatically so that you can
start using it. Click OK to return to the design view, and then place the newly created symbol on your design.

Attach a wire to the inclkO terminal of the PLL symbol, and name the wire 10Mhz. This will connect the wire to the
10Mhz input pin that has already been created in the phase 2 design.

Repeat the previous steps to create a new custom component using the MegaFunction Wizard and select
LPM_COUNTER from the arithmetic folder. Name the custom component SimpleCounter and click next. Select 5
bits for the output bus width. We have chosen 5 bits for the width because we need to count from 0 to31 which
requires 5 bits. You can now click next for the rest of the windows and finally click finish to place the symbol on
your design.

GXFPGA Schematic Entry Tutorial 69

Wire the cO output terminal from the PLL to the clock input on the counter.

SlmpIERﬁnM
FOH21.0)
S8 datal3l 0]
zmdr;e..z; E“_fiwﬁiii[ﬂ 0] =
- SimpleCounter | wren] gz
: up counter : _D_ ED ;:(
+—r clock L daddressf4 0
3 ql4. 0] — . B
e FElClom wrclock
10hihz : rdclock |
ingtg Block Type: AUTD

Figure 5-25: PLL and Counter Circuit

The last component needed is a 32 double word RAM. You will need to deploy the MegaFunction Wizard once
again, and select the 2 port RAM component from the Memory Compiler folder. Call the new component file
SimpleRAM and click Next. Make sure to select 32 as the word length and 32 as the input width as the following

figure shows:

How many 32-bit words of memory? 2

|| Use different data widths on different ports

Read/Write Ports
How wide should the 'q_a' output bus be?
How wide should the 'data_a' input bus be? 2 v

How wide should the 'q' output bus be?

Figure 5-26: RAM Wizard Dialog Box 1

In the next window make sure to select a dual clock for reading and writing so that data can be written to the RAM
from the PCI bus and read out to the 10 pins concurrently.

—Which docking method do you want to use?
) Single dock

‘*: Dual dock: use separate read' and 'write' docks
' Dual dock: use separate ‘input’ and 'output’ docks
(> No dock (fully asynchronous}

{ Customize docks for A and

o

) ports

Figure 5-27: RAM Wizard Dialog Box 2

Click Next on the rest of the windows and click Finish placing the RAM component on your design. Wire the
output bus, q[4..0], from the counter to the read address, rdaddress[31..0], of the RAM component.

Connect a bus to data[31..0] and wraddress[4..0]. Name these busses FDt[31..0] and Addr[6..2] respectively. Then
connect wires to wrclock and rdclock and name the wires PCIClock, and 10Mhz respectively.

You will need to place an AND gate next to the RAM component and wire a new input pin called CS[2] and a wire
named WrEn to it. The output of the AND gate should be connected to the wren input of the RAM. This AND logic
ensures that only BAR2 PCI accesses are able to write to the RAM. This will allow us to use the FGPA Memory

70 GX3700 User’s Guide

space to write out digital patterns to the sequencer instead of the FPGA Register space (which is being used for
control). Note that when CS[2] is high, it signifies an access from BAR2.

Finally create a bus connected to the q[31..0] output from the RAM and name it FlexIO[64..33]. This connects the
RAM output to the 32 physical 10 pins.

sim[:aleral@E
FI[31.0]
dataﬁ?..ﬂ] - —D’ 3
. " wraddress[4.. .
simplecounter ; b rrr — =L ={H -
; -H
clock a[4..0]: rdaddress[4..0] g[31..0]
FLIClomk wrclock
natid up counter; rdclock
""""""""""""""""""""""""""""""""" FAI10MIz - Ny '
BTy AUTO

Figure 5-28: Dynamic Digital Sequencer Circuit

At this point the design is complete, continue with the next sections to generate SVF or RPD files and load your
design to the GX3700.

GXFPGA Schematic Entry Tutorial 71

Configure Project to Output SVF and RPD Files

To ensure that a SVF file is generated upon project compilation, go to the Assignments, Device ... and click on the
Device and Pin Options button. Then click on the Programming Files and verify that the Serial Vector Format
File checkbox has been selected.

¥ Device and Pin Options - tutorial_design_top x|
Category:

- General Programming Files

- Configuration

%w Fles R optional programming file formats to generate. For device families with multiple

- Unused Pins] configuration schemes, if you select a passive configuration scheme in the Configuration tab, the

- Dual-Purpose Fins Quartus II software always generates an SRAM Object File {.sof) and either @ Partial SRAM Object

- Capaditive Loading File {.psof}) or a Programmer Object File {.pof), depending on the configurable device you are

- Board Trace Model targeting.

- 10 Timing

- Voltage ’ . ;

- Pin Placement [Tabular Text File (. ttf) IV serial Vector Format File {.svf)

- Error Detection CRC [~ Raw Binary File (.rbf) [™ |1 System Configuration File (isc)

- CwP Settings

[™ Jam STAPL Byte Code 2.0 File {jbc) [~ IJEDEC STAFL Format File (.jam)

[Compressed

[~ Hexadecimal {IntelFormat) Output File { hexout)

Start address: I[J Count: IUp ;I

Description:

Generates a Tabular Text File (. ttf) containing configuration data that an intelligent external
controller can use to configure the target device.

Beset |

oK Cancel | Help |

Figure 5-29: Select SVF as output file

Now click on the Configuration choose Active Serial Configuration Scheme, check Use Configuration Device
checkbox and select EPCS64 as the configuration device from the drop down selection. Finally click on OK twice
to exit the settings dialog boxes.

72 GX3700 User’s Guide

4 Device and Pin Options - tutorial_design_top

Category:

- General

- Programming Files
- Unused Pins

- Dual-Purpase Pins
- Capadtive Loading
- Board Trace Model
~Violtage

- Pin Placement

- Error Detection CRC
- CywP Settings

& Configuration

designs, these settings apply to the FPGA prototype device.

Specify the device configuration scheme and the configuration device. Note: For HardCopy

Configuration scheme: |Acti\u'e Serial {can use Configuration Device)

Configuration mode: ISEndard

=
=

—Canfiguration device

|EPCse4
¥ Use configuration device:

Configuration Device Options ...

Configuration device I/0 voltage: [Auto
[™ Force VCCIO to be compatible with configuration I/0 voltage

=
|
=

¥ Generate compressed bitstreams

Active serial dodk source:

[™ Enable input tri-state on active configuration pins in user mode

Description:

Passive Serial (PS); Fast Passive Parallel (FPF) and Active Serial (AS).

The method used to load data into the device. Three configuration schemes are available:

Reset

Figure 5-30: Select Configuration Device

GXFPGA Schematic Entry Tutorial 73

Compile an Example Project and Build RPD and SVF Files

Click on Processing menu tab and choose Start Compilation to start the compilation process for the example
project. After the process has ran successfully, you should now see in Quartus Il something similar to the figure
below. The green check marks indicate success and the red X indicates failure. The process will succeed only when
there is no error. There may or may not be any warning. If there is any warning, make sure that it is OK for the
design before moving forward. For this tutorial design, ignore all warnings.

Quartus I - C:/Projects/GxFpga/Examples/Quartus/Gx3700/ Tutorial{Schem/tutori -|ol x|
Ele Edit View Project Assignments Processing Tools Window Help &
= ; >
|DSEH@ & & o o ||[uom oo HEY 2 @8 S TI> 0B 8% 0@ |
Project Navigator x| & Compiation Report 0| @ ‘wtorial_design_top.bdf 2|
<1 | [Table of Contents a
Entity " Flow Status Successful - Tue Oct 04 32011
11.0 Build 157 04/27/2011 5J Web Edition
By Stratix ITT: EP3SL50F780C3 EE Flow Settings tutorial_design_top
BN ttorisl_design_ton & BB Flow Non-Default Global Settings (g lam i
. EE Flow Elapsed Tme Stratix 11l
BB Flow 05 Summary EP35L50F780C3
B FlowLog el
[Analysis & Synthesis 1.459 138,000 (%)
\pm_constant CAFE Fitter 94/ 19,000 (
altpciav_fifazext_sram_rdiifo 30 Assembler 1586 /35,000
altpcia_fifo:ext_sram_wrffo (1 TimeQuest Timing Analyzer e —
local_regsiinst -~ Total virtual pins 0
dma_mem_adrinsti - Total block memory bits 1,142,784 [1,880,064 (61 %)
5 ~ DSP block 18-bit clements 0/215(0 %)
Total PLLs 1/4(25%)
& vierarchy | B Fies | oF Design Units | Total DlLs 0/4(0%)
% [2ype]essase -l
i) Info: Elaborating entity "led driver" for hisrazchy "led_driver:inst3"
A Wa (10230) : Verilog HDL assignment warning at LedDrivez.v(64): truncated value with size 32 to match size of target (24)
i) Info: v "localbus dat _mux" for hierarchy "localbus dat mux:inst7&"
i) Inzo: "altpciav fifo" for hie "altpciav fifoiext sram rdfifo”
i) Info: Elaborating entity "altsyncram® for hierarchy "altpciav fifoiext sram rdfifo|altsyncram:fifo ram”

L) Info: Elaborated megafunction instantiation "altpciav_fifo:ext_sram rdfifo|altey
B} Info: Instantiated megafunction "altpciav_fifo:ext_sram rdfifo|altsyncram:fifo
G}l Info: Found 1 design units, including 1 entities, in source file db/altsyncram :
L) Info: Elaborating entity "altayncram 1ldnl"™ for hierarchy "altpciav fifo:ext sram :
1) Info: Elaborating entity "clock mux_logic® for hierarchy "clock mux logic:inst2®

cram:fifo_ram"
m" with the following pazametes:
1.tdf

J) Info: Elaborating entity "RAM32x32" for hierarchy "RAM32x32:inst5"

L) Info: Flaborating entity cram" for hierarchy "RAM32x32:instS5|altsyncram:altsyncram component”

i) Info: Elaborated megafunction instantiation "RAM32x32:insts|altsyncram:altsyncram component”

E) Info: Instantiated megafunction "RAM32x32:instS|altsy m:altsyncram component” with the following parameter:
B}l Info: Found 1 design units, including 1 entities, in source file db/altsyncram 9spl.tdf

1) Info:

1) Info: Elaborating entity "altpll"” for hiera nstd|altpll:altpll_component”

i) Info: Elaborated megafunction instantiation "pll 0:inst€|altpll:altpll_component”

B} Info: Instantiated megafunction "pll 0:inst8|altpll:altpll_component™ with the following parameter:

B} Info: Found 1 design units, including 1 entities, in source file db/pll 0 altpll.v

L) Info: Elaborating entity "pll 0_altpll™ for hierarc _0:inst8|altpll:altpll component|pll 0 altpll:auto_generated”

dfifo|altsyncram:fifo_ram|altsyncram ldnl:auto gensrated”

[Warning (10230): Verilog HDL assignment warning at ClockMuxLogic.v(72): truncated value with size 32 to match size of tax

:auto_generated"”

y "altsyncram 9spl" for hierarchy "RAM32x32:inst$|altsyncram:altsyncram_component |altsyncram Sspl:
1) Info: "up_counter:instg"
i) Info: instan”

get (2)

il

Messages

Message: D of 1803 Location:

=
310, 604 [100% ODWOLSE

Figure 5-31: Compilation Tools and Status

The SVF file will be generated after the project compilation has finished. The Compilation Task window will show

green check marks next to each major task to indicate completion.

74 GX3700 User's Guide

In order to generate RPD file go to File, Convert Programming Files ...

Select Raw Programming Data File (.rpd) as the Programming file type and tutorial_design_top.rpd as the File
Name. Click on the Add File button and select tutorial_design_top.pof. The .pof file should now appear below the
POF Data node as shown below. Finally, click the Generate button to create the RPD file.

o

(0l x|

1t Convert Programming File - C:/Projects/GxFpga /Examples/Quartus/Gx3700/ Tutorial/tutorial_design_top - &

File Tools Window

Specify the input files to convert and the type of programming file to generate.
You can also import input file information from other files and save the conversion setup information created here for
future use.

—Conversion setup files

Open Conversion Setup Data... Save Conversion Setup...

—Output programming file

Programming file type: |Raw Programming Data File {.rpd)

Options... Configuration device: |EPC 15 LI Mode: Active Serial
File name: |tutoria|_design_top.rpd
Advanced... Remote /Local update difference file: MONME

[~ Memory Map File

—Input files to convert
File/Data area Froperties Start Address Add Hex Data
= POF Data Page_0
- tutorial_design_top.pof EPCS64 Add Sof Page

Add Eile...
Remove
]
Diow

Properties

Generate Cloze

T BRERREE T J) L

Figure 5-32: Convert Programming Files Dialog Box

GXFPGA Schematic Entry Tutorial 75

Simulating the Design

To simulate the design, we will use ModelSim application from Altera. You can download the software for free
form the Altera website. There is a test bench for this tutorial that is already created for you inside the
GXFPGA\Examples\Quartus\GX3700\Tutorial.

Follow these steps to simulate the design:
1. Open the ModelSim application:

[] ModelSim ALTERA 10.1d - Custom Altera Version - o] x|
File Edit View Compile Simulate Add Transcript Tools Layout Bookmarks Window Help

ﬁ“@ﬂ@

[k tiorary]

R

||# Reading C:/altera/13. 1/modelsim_ae tcl fvsim fpref. td ;[
||# Loading project Tutorial_tb

| [Modelsim> |

|Project : Tutorial_tb |<No Design Loaded = <MNo Context=

Figure 5-33: ModelSim Main Window

76 GX3700 User’s Guide

2. Click File=> Change Directory and choose the sim folder under the Tutorial folder. At this point the ModelSim
should display the simulation pins:

EJHodeISlmALTERA 10.1d - Custom Altera Version S : 10 =]
File Edit View Compile Simulate Add Library Tools Layout Bookmarks —Window Help

|IX &l 4

e 2, . o AT
|l brary s HiA x| Wave - Default

sl work
#fll 220model
&l 220model_v
=i, altera
=l altera_insim
| 1|—M altera_lnsim,
| =l altera_mf
1|—M altera_mf_v
=l altera_ver
=l altoxb

| 2, altaxb_lib
1|—M altgxb_ver
ﬂ—m arriagx
1|—M arriagx_hssi
| =l arriagx_hssi
1|—M arriagx_ver
ﬂ—m arriaii |
&l arriail_hssi J
KEE]

“Transmpt P T T e

||# Loading project Tutorial_tb
||cd J/GEOSERVER,/Shared /Orrk [GxFPGA ftutorial_design_simple_adder fsim J
-

||# reading C:\altera\13, 1\modelsim_ae\win32aloem/. . fmodelsim.ini

ModelSim =

|<No Design Loaded = |<N0 Context: /

Figure 5-34: ModelSim Tutorial Simulation

3.

GXFPGA Schematic Entry Tutorial 77

Click Tools=> Tcl>Execute Macro... and choose sim.tcl, and click Open. When ModelSim asks to close the

current project, click Yes. The screen should appear like the screen below:

[] ModelSim ALTERA 10.1d

File Edit View Compile Simulate Add Wave Tools Layout Bookmarks Window Help

=10l x|

A S sRBL2O-AENM|| N o4 alb]
& ¢ @= & lfl—mnnsﬂlml@@ sme]

185 fault |
|¥|Instance
—|—! Tutorial_tb | | il
- 12 PRI {Tutorial_th/UUT/PXI10Mhz
@ FINTIALE 5 [Tustorial_th/UUT/PCICIock
‘_’ #INITIALS PCIClock § | Mutoris_thuUT/CS
P #ASSIGN | R ||| %< /Tutorial_th /LT /Addr
m—g #aLwAYs) [Bed ; T
i . i I
[m WSlm_capaut; WrEn [Tutorial_th/UUTWrER

PX110Mhz
LREAD DV
FlexI0
FDt
WriteData

n— outputs

w [Tutorial _thUUT Flex10

4. fTutorial_th/ULTAREAD_DV

| B'le T
| 4. [Tutorial_thUUTFDt

:@_JJJJJ = wEFws

F : Transcrlpt

||# Simulation Breakpoint: Break in Module Tutorial_tb at .. /testbench/Tutorial_tb.v line 161 ;‘
| # MACRO \WGEOSERVER \Shared\Orrk\GxFPGA\tutorial_design_simple_adder\sim'sim - Copy. td PAUSED at line 34 |
VSIM{paused) = -

[0 ps to 541800 ps [Project : Tutorial_th [Now: 516 ns Delta: 0 [sim: fTutorial_tb/#ALWAYS#90 o

Figure 5-35: Simulation of Design

78 GX3700 User’s Guide

Load Gx3700 with SVF File

Start the GX3700 Panel (from the Windows Start menu, Marvin Test Solutions, GxFpga) and initialize the
instrument. Next, click on the Volatile radio box and then click on the Browse Button (...) to select the newly
generated SVF file (tutorial_design_top.svf). Finally click on the Load button to begin programming the card. You
will see the progress bar indicate the status of the load. Once the load has completed, the status bar should be
unfilled.

i FPGA Board (0x108) » IEl
Setup |1/0 | About
FPGA
(® Volatle () EEPROM Load from EEPROM
File : |C:\Program Files (86)\Marvin Test Solutions\GxFpc|f; . Load
EEPROM
Last Upload On : jN'Ion Jun 16 10:25:30 2014
File Name : GX3700_user_SL70_v0003
Initialize.... Reset Apply Close Help

Figure 5-36: Software Front Panel

GXFPGA Schematic Entry Tutorial 79

Testing the Design

Now that the design has been completed, compiled and loaded into the GX3700, we can move on to the testing.

There are two ways to access the FPGA, either through the software front panel or through the driver API DLL. We
will demonstrate the programming method using ATEasy to access the driver APl DLL.

Adder Testing

The software front panel will be used to test Phase 1 of the design which adds two 32 bit humbers together. Click on
the 1/0 Tab to get started. The Adder phase is controlled through the FPGA Register space.

Offset 0x0 points to the first 32-bit number that will be summed and offset 0x4 points to the second 32-bit number
that will be summed. Write values to both these locations.

The sum can be obtained by reading the 32-bit value at offset 0x8. Verify that the correct sum is read back as shown
in Figure 5-31:

| EPGA Board (0x108) > IEE

Setup | 1/0 About

FPGA Registers FPGA Mem BAR2

Offset : | 00008 Offset : | (x00000000

Data : |Cx000000OF Write Data : |(x00000000 Write
0x18 Read

FPGA Mem BAR3 FPGA Mem BAR4

Offset : | (x00000000 Offset : | (00000000

Data : | (00000000 Write Data : |(x00000000 Write

Read Read
Initialize.... Reset Apply Close Help

Figure 5-37: Using the Software Front Panel to read back the Sum
Clock Mux Testing

The software front panel will once again be used to test Phase 2 of the design. This part of the design uses a Mux to
select between the PCI Clock and the 10 Mhz reference clock. The selected clock is output to I/0O Channel 63 which

80 GX3700 User’s Guide

is located on pin 31 on the Flex 1/0 J2 connector of the GX3700. The Mux is controlled through the FPGA Register
space.

Writing a 0x0 to offset OxC will route the PCI/PCle Clock signal to I/0 Channel 63. Writing 0x1 to the same offset
will route the 10 Mhz clock to this same channel. Try switching between both values while monitoring pin 31 of J2
with an oscilloscope. You should see the appropriate clock signals.

Digital Sequencer Testing

For this test, connect an oscilloscope to 1/0 Channel 65 (pin 1 of J3) to monitor the output signal of the sequencer.
You can access the FPGA memory through the software front panel or through ATEasy. When using the software
front panel, write values to the first 32 double words of the FFGA Memory space (offsets 0x0, 0x4, 0x8, OxC etc).
As you write to these locations, the data patterns being output on I/O Channel 1 should be updating dynamically. If
you fill the 32-double word memory with a clock pattern (alternating 1’s and 0’s), you should be able to measure a
frequency of 100Khz.

When using ATEasy, include the GXFPGA.drv driver and set it up with the correct slot number. Add a variable
called i of type long. You can then run the following code to write to the FPGA memory:

REDIM adwData[32]
adwData[0] =1
For i=0 to 31
FPGA Write Memory(i*4, 4, adwbatalil])
Next

This code will set the first double word to 1 and the rest to 0°s resulting in a frequency of 6.25 Khz.

GXFPGA Verilog Tutorial 81

Chapter 6 - GXFPGA Verilog Tutorial

Introduction

This tutorial will go over the basic workflow to start designing and loading a FPGA configuration for the Gx3700.
The example provides creation of a project using Verilog sources and coding. The “Tutorial design top reg.doc”
contains the design register map.

The tutorial contents will entail:

e Downloading and installing the FPGA design tool

e Creating a new FPGA Design project with the Stratix |11 as the target device

e Setup the pin assignment to work with the GX3700 and Stratix Il FPGA

e Use the Quartus IDE to import and design an example FPGA configuration

e Compile the project and generate the SVF and RPD programming files

e Loading the board with the generated programming files

e Testing the design using the Gx3700 Front Panel software and ATEasy

e The example configuration is broken down into three phases, each with a distinct function:

e Phase 1: Take two values located in PCI Registers and generate a Sum (Adder) which can then be read
through a third PCI Register.

e Phase 2: 2 to 1 multiplexer to choose between the 10 MHz Clock and the PCI Clock which will be
output on one of the Flex1O pins. The clock will be selected through a PCI Register.

The source code for the examples in this chapter is provided in the Examples\Quartus\Gx3700 folder.

Downloading Altera Design FPGA Design Tools

The Marvin Test Solutions Gx3700 User programmable FPGA board can be designed using the free Altera Quartus
I1 Web Edition or Subscription Edition design tool. This FPGA design tool allows end users to generate fully
featured FPGA designs that can be downloaded to the Gx3700 board using the Marvin Test Solutions GXFPGA
software API or software front panel. Other 3™ party tools can also be used to design the FPGA. Before proceeding
with this tutorial, you must have Altera Quartus 11 v11.0 SP1 installed on your PC. More information about this tool
and how to download it can be found at http://www.altera.com/products/software/quartus-ii/web-edition/gts-we-
index.html.

http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html

82 GX3700 User’s Guide

Create New Project

Getting Started With Quartus® Il Software

. . .
Start Designing Start Learning

Designing with Quartus ll software The audio/video interactive tutorial teaches
requires a project you the basic features of Quartus Il software

Create a New Project . .
(New Project wimr’d) Open Interactive Tutorial

Open Existing Project |

Open Recent Project:

TestProject

TestProjeciTrial

2435-100-03_Flex FPGA_Example
TestProject

Web links:

Uterature | [Training | ["Online Demos | [~ Support | @

[Don't show this screen again

Figure 6-1: Quartus Il Start Dialog

After installing Quartus I Web Edition, start the application and select Create a new Project to start the New
Project Wizard or select File, New, New Quartus Project.

Click on Next and then select the Project Folder and enter tutorial_design_top as the project name.
Click on Next twice (skip the adding files window).
Device Selection

The next window will allow you to select the FPGA target device. Select Stratix 111 as the Family and
EP3SL50F780C3 when using the GX3700 or EP3SL70F780C3 for the GX3700e. For newer GXFPGA boards, the
device ID will be displayed in the instrument front panel About page.

Click on Next twice (skip the Specify Tools window).

A window summarizing all the choices made for the creation of this project is shown. Click on Finish.

Pin Assignment Setup

GXFPGA Verilog Tutorial 83

You should now have an empty skeleton project loaded in Quartus 11. Before you can get started on the FPGA
design, you must assign the FPGA pins distinct names so that you can reference them in your design. This can be
accomplished by running a TCL script which contains all the information necessary to configure the pin
assignments as well as settings the project to either schematic entry or Verilog entry. These pin assignments are
unique to this Stratix 111 FPGA and the GX3700 in particular. The following table lists all the pin assignments and
their respective descriptions. The Pin Alias’s listed in the table are the pin names you will be using in your design to
reference the actual hardware pins on the FPGA.

Pin Assignments Table

Pin Alias (Node Name)

Description

Clocks

10Mhz Input. 10 MHz Reference Clock Signal from the PXI Backplane
PCIClock Input. 33 MHz PCI Bus clock or 125MHz PCI Express application clock.
RefClk Input. 80 Mhz Reference Clock onboard the GX3700
PCI Bus
Addr[2..19] Input. The PCI Address lines from the PCI bus
FDt[0..31] Bidir. PCI Data lines from the PCI bus

Input. Chip Select lines from the PCI bus.
CS[1..3] CS[1] is for FPGA registers, CS[2] is for internal SRAM, CS[3] is currently not used.
LEXT Input. External SRAM chip select. This is chip select for external SRAM on PCB.
RdEn Input. PCI Read Enable line from the PCI bus
WTrEn Input. PCI Write Enable line from the PCI bus
LREAD_ DV Output. Read data valid. This is data valid for FDt(31:0) data bus.
LUW Input. Currently not used. Upper Word.
LLW Input. Currently not used. Lower Word.
LRESET Input. Currently not used. Reset coming from PXI bridge FPGA.
PXI Bus
PxiTrig[0..7] Bidir. PXI Bus trigger signals

Output. PXI Star Trigger signal. This signal can be re-defined by the user as bi-
StarTrig directional.
PX1_LBL6 Bidir. PXI Local Bus Left 6. This is local bus according to PXle spec.
PXI_LBR6 Bidir. PXI Local Bus Right 6. This is local bus according to PXle spec.
PXle_DSTARA Input. PXle DSTAR trigger A. This is DSTAR trigger according to PXle spec.
PXle_DSTARB Input. PXle DSTAR trigger B. This is DSTAR trigger according to PXle spec.
PXle_DSTARC Output. PXle DSTAR trigger C. This is DSTAR trigger according to PXle spec.
PXIE_100M Input. PXle 100MHz clock. This is 100MHz clock according to PXle spec.
PXIE_SYNC100 Input. PXle Sync100. This is Sync100 signal according to PXle spec.
1/0

FlexIO[1..160]

Bidir. The physical 10 Channels including 4 global clock inputs (2 differential pairs).

84 GX3700 User’s Guide

External Flash

Fsm_a[1..23] Output. Address bus shared by external SRAM and flash.
Fsd[0..31] Bidir. Data bus shared by external SRAM and flash.
Flash_ce n Output. Flash chip enable.

Flash_oe n Output. Flash output enable.

Flash_we n Output. Flash write enable.

Flash_reset n

Output. Flash chip reset

Flash_byte n

Output. Flash byte/word select.

Flash_busy n

Input. Flash busy

External SRAM

Sram_be n[0..3]

Output. External SRAM byte enable.

Sram_ce_n Output. External SRAM chip select.
Sram_oe_n Output. External SRAM output enable.
Sram_we_n Output. External SRAM write enable.

RX DMA FIFO I/F

RX_DMA_DATI[0..31]

Input. Receive DMA data coming from PC host.

RX_DMA_DV

Input. Receive DMA data valid.

RX_DMA_FIFOFULL

Output. Receive DMA FIFO full. This will throttle data from PC host.

RX_DMA_SP1

Output. Spare. Currently not used.

RX_DMA_SP2

Output. Spare. Currently not used.

TXDMA FIFO I/F

TX_DMA_DATI0..31]

Output. Transmit DMA data from memory going to PC host.

TX_DMA_DV

Output. Transmit DMA data valid.

TX_DMA_FIFOEMPTY

Output. Transmit DMA FIFO empty. When empty and is sending data to PC host, the
DMA engine in PXI bridge FPGA will assert FIFO read enable TX_DMA_FIFO_RD.

TX_DMA _FIFO_RD

Input. Transmit DMA FIFO read enable.

Misc

Spare[0..7] Bidir. Do Not Use. Spares connected to PXI bridge FPGA.
IRQ Output. Interrupt output pin going to PXI bridge FPGA
IRQ = 1 means interrupt will be generated to PC host.
IRQ = 0 means no interrupt.
FSpr[0..3] Bidir. Spare Signals connected to Expansion Board
MCiIr Input. FPGA Master Clear, Active High
TP[0..5] Bidir. Connected to test header J7 on the GX3700 PCB

ACTIVE_LED_N

Output. Active LED. Connect to LD1 LED on board. ‘0’ = LED on, ‘1’ = LED off.

Table 6-1: Pin Assignments Table

GXFPGA Verilog Tutorial 85

Verilog project

In order to configure the project as Verilog and configure the pin assignment the TCL configuration script should be
added to the project. To add the script to the project, click on Project | Add/Remove Files in Project... In the
dialog box, click on the ... button and browse for GX3700Verilog.tcl file in the “C:\Program Files\Marvin Test
Solutions\GxFpga\” folder. On some systems, it is recommended to move the desired TCL file to your project’s
source location prior to adding it to the project. Click Open and then the Add button.

& Settings - Tutorial EI@

Category:

Files
Libraries Selgct the design files you want to indude in the project. Click Add All to add all design files in the project directory to the
4 QOperating Settings and Conditions praject.
Voltage

Temperature File name: .. fsource /Gx3700Verilog. tdl E]

4 Compilation Process Settings _ ; X
Early Timing Estimate File Mame Type Library Design Entry/Synth
Incremental Compilation
Physical Synthesis Optimizations Remave

4 EDA Tool Settings
Desian Entry/Synthesis Up
Simulation
Timing Analysis b
Formal Verification B
Board-Level Bnpruties

4 fAnalysis & Synthesis Settings
WVHDL Input
Verilog HOL Input
Default Parameters

Fitter Settings

TimeQuest Timing Analyzer
Assembler

Design Assistant

SignalTap II Logic Analyzer

Logic Analyzer Interface
PowerPlay Power Analyzer Settings
SSM Analyzer

Figure 6-2: Add Tcl Script to Project

Then click on Tools | TCL Scripts ... Select the configuration script file, GX3700Verilog.tcl and click on Run.
This will configure your FPGA pin assignments.

Note: The TCL file will automatically add all the source files needed for the tutorial design to the Quartus Il project.

You can view the pin assignments by running the Pin Planner application which is found in the Tasks list as
highlighted below:

86 GX3700 User’s Guide

Tasks) & X
Flow: |Compilation |
Task & -

« [E M Compile Design

v Bl B Analysis & Synthesis

-----] Edit Settings

----- EE View Report

[R P Analysis & Elaboration
[+ Partition Merge
-] Netlist Viewers

[+ Design Assistant (Post-Mapping)
[} 1/0 Assignment Analysis

[} Eady Timing Estimate

e - Fitter (Place & Route)

----- [] Edi Settings

----- EE View Report

----- @ Chip Planner {Floorplan and Chip Editor)
------ @ Technology Map Viewer (Post-Fitting)

[} Design Assistant {Post-Fitting) -
-----] Edit Settings
...... E View Report
W (- Assembler (Generate programming files) -
«| | »

Figure 6-3: Task Flow

The Pin Planner will display a matrix of the physical FPGA pins and their mapped names as well as the 1/O standard
supported by the pin. These mapped names are used in the FPGA design, as wire names and 1/O pins, to connect to
the physical connections of the FPGA.

GXFPGA Verilog Tutorial 87

Creating Design File with Verilog

At this point you will have successfully created an FPGA design based on the source codes provided. This section
will walk you through the steps of creating modeled components in several modules.

Note: There is more than one way to accomplish the following designs.

Phase 1: Creating the FPGA design - 32 bit Full Adder

This design will take two double word (32 bit) values, located in the first two double words in the Register space
(byte offset 0x0 and 0x4), and add them together. The sum of the two values will be immediately output to the third
double word in the Register space (byte offset 0x8). The sources for all referenced components are installed with
the GXFPGA software package to C:\Program Files\Marvin Test Solutions\GxFpga\Examples\Quartus\Gx3700\
Tutorial_Verilog\source

Components Used
e adder.v — An n-bit full adder

and_gate.v - A two input and gate, the first input in n-bit width
o d_flipflop.v — A n-bit D flip-flop

e decoder.v — An n-bit decoder

e or_gate2.v - Atwo input or gate, the first input in n-bit width

e or_gated.v - A four input or gate

88 GX3700 User’s Guide

Top-level Verilog file
In order to open the Verilog text editor, click on File menu, and then New the following dialog appears.
Select Verilog HDL File:

@ New ==

Mew Quartus II Project -
4 Design Files
AHCL File
Block Diagram/Schematic File
EDIF Filz
Qsys System File
State Machine File
SystemVerilog HOL File
Td Script File
WHOL File
Verilog HOL File
4 Memory Files
Hexadecimal {Intel-+Format) File
Memary Initialization File
4 Verification/Debuaging Files
In-System Sources and Probes File
Logic Analyzer Interface File
SignalTap II Logic Analyzer File
4 (Other Files
AHDL Indude File
Block Symbaol File
Chain Description File 4
Synopsys Design Constraints File
Text File i

m

[oK][Cancel H Help

Figure 6-4: New File Dialog Box

Top-level inputs and outputs

GXFPGA Verilog Tutorial 89

The top-level object for this project will be named tutorial_design_top.v. Start by creating module prototype with
the proper inputs and outputs. The inputs and outputs all correspond to pin on the FPGA.

module tutorial design top(Addr, WrEn, CS,

input [6:7] Addr;
input WrEn;

input [2:1] CS;
input PCIClock;
input PXI1O0Mhz;
input RdEn;

output [:] FlexIO;
output LREAD DV;

inout [:0] FDt;

endmodule

RdEn, FlexIO, LREAD DV, FDt);

Figure 6-5: GXFPGA Verilog Tutorial Prototype

The first step is creating the circuitry required to decode the PCI Address when data is to be written from the PC to
the FPGA. This circuit will be used in all three functions of this example project. The signals required for PCI Write
access will be the PCI Clock, Write Enable, Chip Select 1, and some PCI Address lines. The PCI Address lines 5
to 2 will be fed to a decoder which will generate a 32-bit value, and the result will be ANDed with the Chip Select 1
bit. Each Chip Select bit represents a certain PCl BAR access (GX3700 has two bars, memory and register
memories). Bit 1 represents BAR1 of the PCI memory space (bit 2 for BAR2). BARL1 is the general-purpose Control
Register BAR for the GX3700. The results of the AND operation will be once again ANDed to the Write Enable

PCI signal.

90 GX3700 User’s Guide

To create the address decoder, we’ll need to model the D Flip-flop (to latch the inputs), the And gate, and the
decoder. For each module that we add, you should use the New File Dialog to add a Verilog HDL file to create the
blank file. When saving, give the file the same name as the module. The source for the referenced modules follows:

module and gate (out, inl, in2);

parameter width=1;

output [width-1:0] out;
input [width-1:0] inl;

input in2;
assign out = in2 ? inl : 0;

endmodule
Figure 6-6: and_gate.v source
When saving, give the file the same name as the entity. The source for the referenced entity follows:

module d flipflop (d, clk, ena, clrn, q);

parameter width = 1;

output [width-1:0] qg;
input clk, ena, clrn;
input [width-1:0]1 d;

reg [width-':0] qg;

always @ (posedge clk or negedge clrn)
begin
if (~clrn)
q <= ;
else 1if (ena)
g <= d;

end

endmodule

Figure 6-7: d_flipflop.v source

GXFPGA Verilog Tutorial 91

When saving, give the file the same name as the module. The source for the referenced modules follows:

module decoder (decoder in, enable, decoder out);

parameter input bit = 2;
output [~ ** input bit-':0] decoder out ;
input [input bit-1:0] decoder in;

input enable;
assign decoder out = enable ? (! << decoder_in) : ;

endmodule
Figure 6-8: decoder.v source

In tutorial_design_top.v, we will now write the code to describe our PCI Address Decoder Circuit. Latch both the
Address and Write Enable lines using the PCI Clock. Decode the 5 bit Address lines into a 32-bit bus named
DecodedAddr. This decoded bus is ANDed with the FPGA’s CS[1] to define our PCI Address Decoded Select
lines.

Additionally, we will define our Write Enable (WE) lines in this code block. We will use this later, along with Read
Enable, to read and write to registers.

// PCI Address Decoder Circuit
wire [4:0] LatchedAddr;
wire LatchedWrEn, LatchedRdEn;

wire [:0] DecodedAddr, WE, Sel;

d flipflop inst23 (WrEn, PCIClock, nc_ena, nc_rst, LatchedWrEn);
d flipflop #(°) inst24 (Addr, PCIClock, nc_ena, nc_rst, LatchedAddr);
decoder # (") inst (LatchedAddr, nc_ena, DecodedAddr);

and gate #() inst2(Sel, DecodedAddr, CS[']);

and gate #() inst3(WE, Sel, LatchedWrEn);

Figure 6-9: PCI Address Decoder Circuit

92 GX3700 User’s Guide

You will notice that we used a few undefined symbols in this last section: nc_ena and nc_rst. These are
placeholders for enable and reset lines that our various components can take advantage of. For this tutorial, | have
chosen not to use enable or reset lines at all so we should add the following code to tutorial_design_top.v to explicit
set these wires to always enabled, never reset.

wire nc_rst, nc ena;
assign nc_rst = ; // No reset

assign nc_ena = ; // Always enabled

Now that the PCI address decoder circuit is complete, we can feed the appropriate bits from the WE bus to D Flip
Flops that will store data clocked in from the PCI data lines. For example, the first double word in PCI memory
(representing the first number to be summed) will be written to a D Flip Flop with its enable line tied to WE[0] (the
first bit in the WE bus). The second double word to be added will be written to another D Flip Flop with its enable
line tied to WE[1]. Finally, the PCI Clock signal (33Mhz) will be used as the clock source of the D Flip Flops. Note
that each bit of the Sel and WE buses represent a consecutive double word address (bit O corresponds with byte 0,
bit 1 corresponds with byte 4, bit 2 corresponds with byte 8 etc.).

First we start by creating an extend circuit to deal with any timing issues with the WE signal. Then we will create
some Flip Flops to latch inputs to the adders. We will use a placeholder named LatchedFDt as the input to the D
Flip Flops. Eventually the PCI data lines will drive these inputs. Wire the outputs of the D Flip Flops to the Adder
component. The output of the adder, Sum, will be used as an output later.

module or gate4 (out, inl, in2, in3, in4);
parameter width=';
output [width-1:0] out;

input [width-':0] inl, in2, in3, in4;
assign out=inl|in2|in3|in4;

endmodule

Figure 6-10: or_gate4.v source

module or gate2 (out, inl, in2);
parameter width=';

output [width-1:0] out;

input [width-1:0] inl, in2;

assign out=inl|in2;

endmodule

Figure 6-11: or_gate2.v source

GXFPGA Verilog Tutorial 93

module adder (dataa, datab, result);

parameter width = 1;
output [width-'1:0] result;
input [width-1:0] dataa, datab;

assign result = dataatdatab;

endmodule
Figure 6-12: adder.v source

WE[31..0] extend circuit - Extend write enable to mitigate timing iss
wire [:0] LatchedWE, LatchedWE2, LatchedWE3, WE EXT;
d flipflop #() inst26 (WE, PCIClock, nc_ena, nc_rst, LatchedWE);
d flipflop #(:") inst27 (LatchedWE, PCIClock, nc_ena, nc_rst, LatchedWE2);
d flipflop #(:") inst28 (LatchedWE2, PCIClock, nc_ena, nc_rst, LatchedWE3);
or gated4 #(°~) inst30(WE _EXT, WE, LatchedWE, LatchedWE2, LatchedWE3);

Adder circuit - Latch the addends and include adder
wire [:0] Sum, Addendl, Addend2;
d flipflop #() inst4 (LatchedFDt, PCIClock, WE EXT[U], nc_rst, Addendl);
d flipflop #() inst5(LatchedFDt, PCIClock, WE EXT['], nc_rst, Addend2);
adder # () inst7 (Addendl, Addend2, Sum);

Figure 6-13: WE Extend Circuit and Adder Circuit

Before moving on we must first extend the RdEn signal. Add the following to the tutorial_design_top.v:

Circuit

wire RdEn_Extend;

wire [21:0] RE;

or gate2 instl (RdEn_Extend, RdEn, LatchedRdEn);

d flipflop inst8 (RdEn, PCIClock, nc_ena, nc_rst, LatchedRdEn);

and gate #() instl2(RE, Sel, RdEn Extend);

d flipflop inst21 (LatchedRdEn, PCIClock, nc _ena, nc_rst, LREAD DV);

// RE[31..0] extend circuit - Extend read enable to mitigate timing issues

wire [:U] LatchedRE, LatchedRE2, LatchedRE3, RE_EXT;

d flipflop #(:") instl1l8 (RE, PCIClock, nc_ena, nc_rst, LatchedRE);

d flipflop #(:") instl9(LatchedRE, PCIClock, nc ena, nc_rst, LatchedRE2);
d flipflop #() inst20 (LatchedRE2, PCIClock, nc_ena, nc_rst, LatchedRE3);
or gated4 #() inst22(RE_EXT, RE, LatchedRE, LatchedRE2, LatchedRE3);

Figure 6-14: RdEnN to 2 PCI Circuit and RE Extend Circuit

94 GX3700 User’s Guide

We also create a Read Data Valid output pin, LREAD_DV. This comes from a D-Flipflop with the PCIClock as an
input clock and the RdEn as the input data. The D-Flip Flop also creates our extender for our ReadEnable.

The inputs to the D Flips Flops can now be wired to the PCI data lines (FDt). We need to clean up the FDt signal as
is comes back into our circuit by adding the D-FlipFlop.

wire [:0] FDt, LatchedFDt;
reg [:0] FDt_out value;
reg [Z1:0] FDt in value;

assign FDt = RE EXT ? FDt out value :

’

d flipflop #(") inst25(FDt_in value, PCIClock, nc_ena, nc_rst, LatchedFDt);
always @ (posedge PCIClock) begin
if (RE_EXT[]==)

FDt out value <= Sum;
else if (RE_EXT[U]==)

FDt out value <= Addendl;
else if (RE_EXT[!]==)

FDt out value <= Addend2;
else if (RE_EXT[|]==)

FDt out value <= result;

FDt in value <= FDt;

end

Figure 6-15: FDt in/out signal assignment

Now that the design has been completed, a revision number should be added so that the end user can read it back
from the PCI bus at the 32" register double word location (byte address 0x7C).

Including a revision number constant to the design is a Marvin Test Solutions standard practice that we recommend
end users to follow. The revision constant is 32 bits long and is read as a hexadecimal number such as 0x3564A000.
The first two digits of the hexadecimal number represent the company, in this case 35 is for Marvin Test Solutions
designs. The next two digits are the design specific code, 64 in this case. And the last 4 digits, A0QO, is the revision
of the design.

Add the following to tutorial_design_top.v:

reg [:0] result =

Figure 6-16: Symbol Properties

GXFPGA Verilog Tutorial 95

Phase 2: Creating the FPGA Design - 2to 1 Clock Mux

This design will output either the PCI Clock (33Mhz) or the 10Mhz clock to FlexIO Channel 65 (Check connectors
tables for the correct pin location) depending on what was written to the 4™ double word in the PCI register space
(byte offset OxC). A 1 will select the 10Mhz clock signal, and a 0 will select the PCI clock signal.

Design

You will now build upon the tutorial project to add the functionality of a 2 to 1 Clock Mux. The 10Mhz clock will
be brought into the design by an input pin. The PCI Clock signal input pin is already present in the Phase 1 circuit,
so this will be reused. FlexIO[65] (10 Channel 65) will be used to output the selected clock to the outside world.

wire LatchedFDt0O, PCIClock;
d flipflop inst6 (FDt[U], PCIClock, WE EXT[3], nc_rst, LatchedFDtO);
assign FlexIO[¢5] = LatchedFDt0 ? PXI10Mhz : PCIClock;

Figure 6-17: Clock Mux Circuit

FDt[0] is the first bit of the PCI data bus. This bit can either be 0 or 1, to indicate which clock source to choose.
WE_EXT][3] is the 4" bit from the decoded PCI Address. When this bit is high, it indicates that the PCI Bus is
addressing the 4™ double word (byte offset 0xC) of the Register space for the GX3700. In our case, the value of this
double word is used to select which clock is selected by our Mux.

At this point the design is complete, continue with the next sections to generate SVF or RPD files and load your
design to the GX3700.

96 GX3700 User’s Guide

Configure Project to Output SVF and RPD Files

To ensure that a SVF file is generated upon project compilation, go to the Assignments, Device ... and click on the
Device and Pin Options button. Then click on the Programming Files and verify that the Serial Vector Format
File checkbox has been selected.

¥ Device and Pin Options - tutorial_design_top x|
Category:

- General Programming Files

- Configuration

%w Fles R optional programming file formats to generate. For device families with multiple

- Unused Pins] configuration schemes, if you select a passive configuration scheme in the Configuration tab, the

- Dual-Purpose Fins Quartus II software always generates an SRAM Object File {.sof) and either @ Partial SRAM Object

- Capaditive Loading File {.psof}) or a Programmer Object File {.pof), depending on the configurable device you are

- Board Trace Model targeting.

- 10 Timing

- Voltage ’ . ;

- Pin Placement [Tabular Text File (. ttf) IV serial Vector Format File {.svf)

- Error Detection CRC [~ Raw Binary File (.rbf) [™ |1 System Configuration File (isc)

- CwP Settings

[™ Jam STAPL Byte Code 2.0 File {jbc) [~ IJEDEC STAFL Format File (.jam)

[Compressed

[~ Hexadecimal {IntelFormat) Output File { hexout)

Start address: I[J Count: IUp ;I

Description:

Generates a Tabular Text File (. ttf) containing configuration data that an intelligent external
controller can use to configure the target device.

Beset |

oK Cancel | Help |

Figure 6-18: Select SVF as output file

Now click on the Configuration choose Active Serial Configuration Scheme, check Use Configuration Device
checkbox and select EPCS64 as the configuration device from the drop down selection. Finally click on OK twice
to exit the settings dialog boxes.

GXFPGA Verilog Tutorial 97

4 Device and Pin Options - tutorial_design_top x|
Category:
e
- Programming Files Specify the device configuration scheme and the configuration device. Note: For HardCopy
- Unused Pins designs, these settings apply to the FPGA prototype device.
- Dual-Purpase Pins
g:ap?duﬁr\;iéﬁgéﬁ Configuration scheme: |Acti\u'e Serial {can use Configuration Device) j
IID 'I'lrning . :
-~ Voltage Configuration mode: ISEndard ;I
-+ Pin Placement —Configuration device
- Error Detection CRC
- CwP Settings |EPCse4 =l
¥ Use configuration device:
Configuration Device Options ... I
Configuration device IO voltage: |Aub:u ;I
™ Force VCCIO to be compatible with configuration 1/0 voltage

¥ Generate compressed bitstreams

Active serial dodk source: vI

[™ Enable input tri-state on active configuration pins in user mode

Description:

The method used to load data into the device. Three configuration schemes are available:
Passive Serial (PS); Fast Passive Parallel (FPF) and Active Serial (AS).

Reset

Figure 6-19: Select Configuration Device

98 GX3700 User’s Guide

Compile an Example Project and Build RPD and SVF Files

Click on Processing menu tab and choose Start Compilation to start the compilation process for the example
project. After the process, has ran successfully, you should now see in Quartus Il something similar to the figure
below. The green check marks indicate success and the red X indicates failure. The process will succeed only when
there is no error. There may or may not be any warning. If there is any warning, make sure that it is OK for the
design before moving forward. For this tutorial design, ignore all warnings.

Quartus I - C:/Projects/GxFpga/Examples/Quartus/Gx3700/ Tutorial{Schem/tutori -|ol x|
Ele Edit View Project Assignments Processing Tools Window Help &
= ; >
|DSEH@ & & o o ||[uom oo HEY 2 @8 S TI> 0B 8% 0@ |
Project Navigator x| & Compiation Report 0| @ ‘wtorial_design_top.bdf 2|
<1 | [Table of Contents a
Entity " Flow Status Successful - Tue Oct 04 32011
11.0 Build 157 04/27/2011 5J Web Edition
By Stratix ITT: EP3SL50F780C3 EE Flow Settings tutorial_design_top
BN ttorisl_design_ton & BB Flow Non-Default Global Settings (g lam i
. EE Flow Elapsed Tme Stratix 11l
BB Flow 05 Summary EP35L50F780C3
B FlowLog el
[Analysis & Synthesis 1.459 138,000 (%)
\pm_constant CAFE Fitter 94/ 19,000 (
altpciav_fifazext_sram_rdiifo 30 Assembler 1586 /35,000
altpcia_fifo:ext_sram_wrffo (1 TimeQuest Timing Analyzer e —
local_regsiinst -~ Total virtual pins 0
dma_mem_adrinsti - Total block memory bits 1,142,784 [1,880,064 (61 %)
5 ~ DSP block 18-bit clements 0/215(0 %)
Total PLLs 1/4(25%)
& vierarchy | B Fies | oF Design Units | Total DlLs 0/4(0%)
% [2ype]essase -l
i) Info: Elaborating entity "led driver" for hisrazchy "led_driver:inst3"
A Wa (10230) : Verilog HDL assignment warning at LedDrivez.v(64): truncated value with size 32 to match size of target (24)
i) Info: v "localbus dat _mux" for hierarchy "localbus dat mux:inst7&"
i) Inzo: "altpciav fifo" for hie "altpciav fifoiext sram rdfifo”
i) Info: Elaborating entity "altsyncram® for hierarchy "altpciav fifoiext sram rdfifo|altsyncram:fifo ram”

L) Info: Elaborated megafunction instantiation "altpciav_fifo:ext_sram rdfifo|altey
B} Info: Instantiated megafunction "altpciav_fifo:ext_sram rdfifo|altsyncram:fifo
G}l Info: Found 1 design units, including 1 entities, in source file db/altsyncram :
L) Info: Elaborating entity "altayncram 1ldnl"™ for hierarchy "altpciav fifo:ext sram :
1) Info: Elaborating entity "clock mux_logic® for hierarchy "clock mux logic:inst2®

cram:fifo_ram"
m" with the following pazametes:
1.tdf

J) Info: Elaborating entity "RAM32x32" for hierarchy "RAM32x32:inst5"

L) Info: Flaborating entity cram" for hierarchy "RAM32x32:instS5|altsyncram:altsyncram component”

i) Info: Elaborated megafunction instantiation "RAM32x32:insts|altsyncram:altsyncram component”

E) Info: Instantiated megafunction "RAM32x32:instS|altsy m:altsyncram component” with the following parameter:
B}l Info: Found 1 design units, including 1 entities, in source file db/altsyncram 9spl.tdf

1) Info:

1) Info: Elaborating entity "altpll"” for hiera nstd|altpll:altpll_component”

i) Info: Elaborated megafunction instantiation "pll 0:inst€|altpll:altpll_component”

B} Info: Instantiated megafunction "pll 0:inst8|altpll:altpll_component™ with the following parameter:

B} Info: Found 1 design units, including 1 entities, in source file db/pll 0 altpll.v

L) Info: Elaborating entity "pll 0_altpll™ for hierarc _0:inst8|altpll:altpll component|pll 0 altpll:auto_generated”

[Warning (10230): Verilog HDL assignment warning at ClockMuxLogic.v(72): truncated value with size 32 to match size of tax

y "altsyncram 9spl" for hierarchy "RAM32x32:inst$|altsyncram:altsyncram_component |altsyncram Sspl:
1) Info: "up_counter:instg"
i) Info: instan”

dfifo|altsyncram:fifo_ram|altsyncram ldnl:auto gensrated”

get (2)

:auto_generated"”

il

Messages

Message: D of 1803 Location:

=
310, 604 [100% ODWOLSE

Figure 6-20: Compilation Tools and Status

The SVF file will be generated after the project compilation has finished. The Compilation Task window will show

green check marks next to each major task to indicate completion.

GXFPGA Verilog Tutorial 99

In order to generate RPD file go to File, Convert Programming Files ...

Select Raw Programming Data File (.rpd) as the Programming file type and tutorial_design_top.rpd as the File
Name. Click on the Add File button and select tutorial_design_top.pof. The .pof file should now appear below the
POF Data node as shown below. Finally, click the Generate button to create the RPD file.

o

(0l x|

1t Convert Programming File - C:/Projects/GxFpga /Examples/Quartus/Gx3700/ Tutorial/tutorial_design_top - &

File Tools Window

Specify the input files to convert and the type of programming file to generate.
You can also import input file information from other files and save the conversion setup information created here for
future use.

—Conversion setup files

Open Conversion Setup Data... Save Conversion Setup...

—Output programming file

Programming file type: |Raw Programming Data File {.rpd)

Options... Configuration device: |EPC 15 LI Mode: Active Serial
File name: |tutoria|_design_top.rpd
Advanced... Remote /Local update difference file: MONME

[~ Memory Map File

—Input files to convert
File/Data area Froperties Start Address Add Hex Data
= POF Data Page_0
- tutorial_design_top.pof EPCS64 Add Sof Page

Add Eile...
Remove
]
Diow

Properties

Generate Cloze

T BRERREE T J) L

Figure 6-21: Convert Programming Files Dialog Box

100 GX3700 User’s Guide

Load Gx3700 with SVF File

Start the GX3700 Panel (from the Windows Start menu, Marvin Test Solutions, GxFpga) and initialize the
instrument. Next, click on the Volatile radio box and then click on the Browse Button (...) to select the newly
generated SVF file (tutorial_design_top.svf). Finally click on the Load button to begin programming the card. You
will see the progress bar indicate the status of the load. Once the load has completed, the status bar should be
unfilled.

A FPGA Board (0x108) » IEE
Setup | 1/0 | About
FPGA
(@) Volatle () EEPROM Load from EEPROM
File : |C:\Program Files {86)\Marvin Test Solutions\GxFpc| _ Load
EEPROM
Last Upload On : jN'Ion Jun 16 10:25:30 2014
File Name - GX3700_user_SL70_v0003
Initialize.... Reset Apply Close Help

Figure 6-22: Software Front Panel

GXFPGA Verilog Tutorial 101

Testing the Design

Now that the design has been completed, compiled and loaded into the GX3700, we can move on to the testing.
There are two ways to access the FPGA, either through the software front panel or through the driver APl DLL. We
will demonstrate the programming method using ATEasy to access the driver APl DLL.

Adder Testing

The software front panel will be used to test Phase 1 of the design which adds two 32 bit numbers together. Click on
the 1/0O Tab to get started. The Adder phase is controlled through the FPGA Register space. Offset 0x0 points to the
first 32 bit number that will be summed and offset 0x4 points to the second 32 bit number that will be summed.
Write values to both these locations. The sum can be obtained by reading the 32-bit value at offset 0x8. Verify that
the correct sum is read back.

I FPGA Board (0x108) » IEN

Setup | 1/0 About

FPGA Registers FPGA Mem BAR2

Offset : | 300008 Offset : | (x00000000

Data : | (x0000000F Write Data : | (x00000000 Write
18 Read

FPGA Mem BAR3 FPGA Mem BAR4

Offset : | 2x00000000 Offset : | (00000000

Data : |(<00000000 Write Data : |(x00000000 Write

Read Read
Initialize.... Reset Apply Close Help

Figure 6-23: Using the Software Front Panel to read back the Sum

102 GX3700 User’s Guide

Clock Mux Testing

The software front panel will once again be used to test Phase 2 of the design. This part of the design uses a Mux to
select between the PCI Clock and the 10 Mhz reference clock. The selected clock is output to I/O Channel 65. The
Mux is controlled through the FPGA Register space.

Writing a 0x0 to offset OXxC will route the PCI/PCle Clock signal to I/0O Channel 65. Writing 0x1 to the same offset
will route the 10 Mhz clock to this same channel. Try switching between both values while monitoring pin with an
oscilloscope. You should see the appropriate clock signals.

GXFPGA VHDL Tutorial 103

Chapter 7 - GXFPGA VHDL Tutorial

Introduction

This tutorial will go over the basic workflow to start designing and loading a FPGA configuration for the Gx3700.
The example provides creation of a project using VHDL sources and coding. The “Tutorial design top reg.doc”
contains the design register map.

The tutorial contents will entail:

e Downloading and installing the FPGA design tool

e Creating a new FPGA Design project with the Stratix |11 as the target device

e Setup the pin assignment to work with the GX3700 and Stratix Il FPGA

e Use the Quartus IDE to create an example FPGA configuration

e Compile the project and generate the SVF and RPD programming files

e Loading the board with the generated programming files

e Testing the design using the Gx3700 Front Panel software and ATEasy

e The example configuration is broken down into three phases, each with a distinct function:

o Phase 1: Take two values located in PCI Registers and generate a Sum (Adder) which can then be read
through a third PCI Register.

e Phase 2: 2 to 1 multiplexer to choose between the 10 MHz Clock and the PCI Clock which will be
output on one of the Flex1O pins. The clock will be selected through a PCI Register.

The source code for the examples in this chapter is provided in the Examples\Quartus\Gx3700 folder.

Downloading Altera Design FPGA Design Tools

The Marvin Test Solutions Gx3700 User programmable FPGA board can be designed using the free Altera Quartus
I1 Web Edition or Subscription Edition design tool. This FPGA design tool allows end users to generate fully
featured FPGA designs that can be downloaded to the Gx3700 board using the Marvin Test Solutions GXFPGA
software API or software front panel. Other 3™ party tools can also be used to design the FPGA. Before proceeding
with this tutorial, you must have Altera Quartus 11 v11.0 SP1 installed on your PC. More information about this tool
and how to download it can be found at http://www.altera.com/products/software/quartus-ii/web-edition/gts-we-
index.html.

http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html

104 GX3700 User’s Guide

Create New Project

Getting Started With Quartus® Il Software

. . .
Start Designing Start Learning

Designing with Quartus ll software The audio/video interactive tutorial teaches
requires a project you the basic features of Quartus Il software

Create a New Project

(New Project Wizard) Open Interactive Tutorial

Open Existing Project |

Open Recent Project:

TestProject

TestProjeciTrial

2435-100-03_Flex FPGA_Example
TestProject

Web links:

Uterature | [Training | ["Online Demos | [~ Support | @

[Don't show this screen again

Figure 7-1: Quartus Il Start Dialog

After installing Quartus Il Web Edition, start the application and select Create a new Project to start the New
Project Wizard or select File, New, New Quartus Project.

Click on Next and then select the Project Folder and enter tutorial_design_top as the project name.
Click on Next twice (skip the adding files window).
Device Selection

The next window will allow you to select the FPGA target device. Select Stratix 111 as the Family and
EP3SL50F780C3 when using the GX3700 or EP3SL70F780C3 for the GX3700e. For newer GXFPGA boards, the
device ID will be displayed in the instrument front panel About page.

Click on Next twice (skip the Specify Tools window).

A window summarizing all the choices made for the creation of this project is shown. Click on Finish.

Pin Assignment Setup

GXFPGA VHDL Tutorial 105

You should now have an empty skeleton project loaded in Quartus 11. Before you can get started on the FPGA
design, you must assign the FPGA pins distinct names so that you can reference them in your design. This can be
accomplished by running a TCL script which contains all the information necessary to configure the pin
assignments as well as settings the project to either schematic entry or Verilog entry. These pin assignments are
unique to this Stratix 111 FPGA and the GX3700 in particular. The following table lists all the pin assignments and
their respective descriptions. The Pin Alias’s listed in the table are the pin names you will be using in your design to
reference the actual hardware pins on the FPGA.

Pin Assignments Table

Pin Alias (Node Name)

Description

Clocks

10Mhz Input. 10 MHz Reference Clock Signal from the PXI Backplane
PCIClock Input. 33 MHz PCI Bus clock or 125MHz PCI Express application clock.
RefClk Input. 80 Mhz Reference Clock onboard the GX3700
PCI Bus
Addr[2..19] Input. The PCI Address lines from the PCI bus
FDt[0..31] Bidir. PCI Data lines from the PCI bus

Input. Chip Select lines from the PCI bus.
CS[1..3] CS[1] is for FPGA registers, CS[2] is for internal SRAM, CS[3] is currently not used.
LEXT Input. External SRAM chip select. This is chip select for external SRAM on PCB.
RdEn Input. PCI Read Enable line from the PCI bus
WrEnN Input. PCI Write Enable line from the PCI bus
LREAD DV Output. Read data valid. This is data valid for FDt(31:0) data bus.
LUW Input. Currently not used. Upper Word.
LLW Input. Currently not used. Lower Word.
LRESET Input. Currently not used. Reset coming from PXI bridge FPGA.
PXI Bus
PxiTrig[0..7] Bidir. PXI Bus trigger signals

Output. PXI Star Trigger signal. This signal can be re-defined by the user as bi-
StarTrig directional.
PXI_LBL6 Bidir. PXI Local Bus Left 6. This is local bus according to PXIle spec.
PXI_LBR6 Bidir. PXI Local Bus Right 6. This is local bus according to PXle spec.
PXle_DSTARA Input. PXle DSTAR trigger A. This is DSTAR trigger according to PXle spec.
PXle_DSTARB Input. PXle DSTAR trigger B. This is DSTAR trigger according to PXle spec.
PXle_DSTARC Output. PXle DSTAR trigger C. This is DSTAR trigger according to PXle spec.
PXIE_100M Input. PXle 100MHz clock. This is 100MHz clock according to PXle spec.
PXIE_SYNC100 Input. PXle Sync100. This is Sync100 signal according to PXle spec.
1/0

FlexIO[1..160]

Bidir. The physical 10 Channels including 4 global clock inputs (2 differential pairs).

106 GX3700 User’s Guide

External Flash

Fsm_a[1..23] Output. Address bus shared by external SRAM and flash.
Fsd[0..31] Bidir. Data bus shared by external SRAM and flash.
Flash_ce n Output. Flash chip enable.

Flash_oe n Output. Flash output enable.

Flash_we n Output. Flash write enable.

Flash_reset n

Output. Flash chip reset

Flash_byte n

Output. Flash byte/word select.

Flash_busy n

Input. Flash busy

External SRAM

Sram_be_n[0..3]

Output. External SRAM byte enable.

Sram_ce_n Output. External SRAM chip select.
Sram_oe_n Output. External SRAM output enable.
Sram_we_n Output. External SRAM write enable.

RX DMA FIFO I/F

RX_DMA_DATI0..31]

Input. Receive DMA data coming from PC host.

RX_DMA_DV Input. Receive DMA data valid.

RX_DMA_FIFOFULL Output. Receive DMA FIFO full. This will throttle data from PC host.
RX_DMA _SP1 Output. Spare. Currently not used.

RX_DMA_SP2 Output. Spare. Currently not used.

TXDMA FIFO I/F

TX_DMA_DATI0..31]

Output. Transmit DMA data from memory going to PC host.

TX_DMA_DV

Output. Transmit DMA data valid.

TX_DMA_FIFOEMPTY

Output. Transmit DMA FIFO empty. When empty and is sending data to PC host, the
DMA engine in PXI bridge FPGA will assert FIFO read enable TX_DMA_FIFO_RD.

TX_DMA _FIFO_RD

Input. Transmit DMA FIFO read enable.

Misc

Spare[0..7] Bidir. Do Not Use. Spares connected to PXI bridge FPGA.
IRQ Output. Interrupt output pin going to PXI bridge FPGA
IRQ = 1 means interrupt will be generated to PC host.
IRQ = 0 means no interrupt.
FSpr[0..3] Bidir. Spare Signals connected to Expansion Board
MCIr Input. FPGA Master Clear, Active High
TP[0..5] Bidir. Connected to test header J7 on the GX3700 PCB

ACTIVE_LED_N

Output. Active LED. Connect to LD1 LED on board. ‘0’ = LED on, ‘1’ = LED off.

Table 7-1: Pin Assignments Table

Schematic entry project

GXFPGA VHDL Tutorial 107

In order to configure the project as schematic entry and configure the pin assignment the TCL configuration script
should be added to the project. To add the script to the project, click on Project | Add/Remove Files in Project...
In the dialog box, click on the ... button and browse for GX3700VHDL.tcl file in the “C:\Program Files\Marvin
Test Solutions\GxFpga\” folder. On some systems, you may need to Click Open and then the Add button.

¢ Settings - tutorial_design_top

Category:

[=]- Operating Settings and Conditions directory to the project.

- Libraries Select the design files you want to indude in the project. Click Add All to add all design files in the project

=181 x|

Voltage

Temperature

[} Compilation Process Settings Eile name: I - fGx37005chem, tcl

o

- Early Timing Estimate

- Incremental Compilation File Name |TYPE ||-ib"3"3' |D‘3559n Entry/Synthesis Tool

- Physical Synthesis Optimizations
[=H EDA Tool Settings
- Design Entry/Synthesis
- Simulation
- Timing Analysis
- Formal Verification
- Board-Level
[Analysis & Synthesis Settings
- VHDL Input
- Verilog HOL Input
- Default Parameters
- Fitter Settings
- TimeQuest Timing Analyzer
- Assembler
- Design Assistant
- SignalTap II Logic Analyzer
- Logic Analyzer Interface
- PowerPlay Power Analyzer Settings
- 55M Analyzer

Add All |
Remove
Up |
Down |
Properties |

[

¥ Buy Software I

Apply Help

Figure 7-2: Add Tcl Script to Project

Then click on Tools | TCL Scripts ... Select the configuration script file, GX3700VHDL.tcl and click on Run. This

will configure your FPGA pin assignments.

Note: The TCL file will automatically add all the source files needed for the tutorial design to the Quartus Il project.

You can view the pin assignments by running the Pin Planner application which is found in the Tasks list as

highlighted below:

108 GX3700 User’s Guide

Tasks) & X
Flow: |Compilation |
Task & -

« [E M Compile Design

v Bl B Analysis & Synthesis

-----] Edit Settings

----- EE View Report

[R P Analysis & Elaboration
[+ Partition Merge
-] Netlist Viewers

[+ Design Assistant (Post-Mapping)
[} 1/0 Assignment Analysis

[} Eady Timing Estimate

e - Fitter (Place & Route)

----- [] Edi Settings

----- EE View Report

----- @ Chip Planner {Floorplan and Chip Editor)
------ @ Technology Map Viewer (Post-Fitting)

[} Design Assistant {Post-Fitting) -
-----] Edit Settings
...... E View Report
W (- Assembler (Generate programming files) -
«| | »

Figure 7-3: Task Flow

The Pin Planner will display a matrix of the physical FPGA pins and their mapped names as well as the 1/O standard
supported by the pin. These mapped names are used in the FPGA design, as wire names and 1/O pins, to connect to
the physical connections of the FPGA.

GXFPGA VHDL Tutorial 109

Creating Design File with VHDL

This section will walk you through the steps of creating modeled components in several modules.

Note: There is more than one way to accomplish the following designs.

Phase 1: Creating the FPGA design - 32 bit Full Adder

This design will take two double word (32 bit) values, located in the first two double words in the Register space
(byte offset 0x0 and 0x4), and add them together. The sum of the two values will be immediately output to the third
double word in the Register space (byte offset 0x8). The sources for all referenced components are installed with
the GXFPGA software package to C:\Program Files\Marvin Test Solutions\GxFpga\Examples\Quartus\Gx3700\
Tutorial_VHDL\source

Components Used

o d_flipflop_1.vhd — A 1-bit D flip-flop

o d_flipflop_n.vhd - A n-bit D flip-flop

e decoder.vhd — A 5 to 32 decoder (structural)
e or_gate2.vhd — A two input or gate

e or_gated.vhd - A four input or gate

e adder.vhd — An n-bit full adder

e and_gate_1.vhd — A two input 1-bit and gate

e and_gate_n.vhd — A two input variable-width and gate

110 GX3700 User’s Guide

Top-level VHDL file
In order to open the VHDL text editor, click on File menu, and then New the following dialog appears.
Select VHDL File:

@ New ==

Mew Quartus II Project -
4 Design Files
AHCL File
Block Diagram/Schematic File
EDIF Filz
Qsys System File
State Machine File
SystemVerilog HOL File
Td Script File
WHOL File
Verilog HOL File
4 Memory Files
Hexadecimal {Intel-+Format) File
Memary Initialization File
4 Verification/Debuaging Files
In-System Sources and Probes File
Logic Analyzer Interface File
SignalTap II Logic Analyzer File
4 (Other Files
AHDL Indude File
Block Symbaol File
Chain Description File 4
Synopsys Design Constraints File
Text File i

m

oK][Cancel H Help

Figure 7-4: New File Dialog Box

GXFPGA VHDL Tutorial 111

Top-level inputs and outputs

The top-level object for this project will be named tutorial_design_top.vhd. Start by creating module prototype
with the proper inputs and outputs. The inputs and outputs all correspond to pin on the FPGA.

LIBRARY ieee ;
USE ieee.std logic_1164.all ;

ENTITY tutorial design_ top IS

PORT (Addr . IN STD LOGIC VECTOR (6 downto 2);
Cs : IN STD_LOGIC VECTOR(Z downto 1);
WrEn, RdEn : IN STD LOGIC;

PCIClock, PXI10Mhz : IN STD LOGIC;

FlexIO : OUT STD LOGIC VECTOR(downto) ;
LREAD DV : OUT STD_LOGIC;

FDt : INOUT STD LOGIC VECTOR (downto 0));

END tutorial design top;

Figure 7-5: GXFPGA VHDL Tutorial Prototype

The first step is creating the circuitry required to decode the PCI Address when data is to be written from the PC to
the FPGA. This circuit will be used in all three functions of this example project. The signals required for PCI Write
access will be the PCI Clock, Write Enable, Chip Select 1, and some PCI Address lines. The PCI Address lines 5
to 2 will be fed to a decoder which will generate a 32-bit value, and the result will be ANDed with the Chip Select 1
bit. Each Chip Select bit represents a certain PCI BAR access (GX3700 has two bars, memory and register
memories). Bit 1 represents BAR1 of the PCI memory space (bit 2 for BAR2). BAR1 is the general-purpose Control
Register BAR for the GX3700. The results of the AND operation will be once again ANDed to the Write Enable
PCI signal.

112 GX3700 User’s Guide

To create the address decoder, we’ll need to model the D Flip-flop (to latch the inputs), the AND gate, and the
decoder. For each module that we add, you should use the New File Dialog to add a Verilog HDL file to create the
blank file. When saving, give the file the same name as the module. The source for the referenced modules follows:

LIBRARY ieee;
USE ieee.std logic 1164.all;

ENTITY and_gate n IS

GENERIC (n_width : NATURAL :=)
PORT (Inputl : IN STD LOGIC VECTOR (n_width-1 downto 0);
Input?2 : IN STD LOGIC;
Output : OUT STD LOGIC VECTOR (n_width-1 downto 0));

END and gate n;

ARCHITECTURE Behavior OF and gate n IS

BEGIN
PROCESS (Inputl, Input2) BEGIN

IF Input2 = '!' THEN
Output <= Inputl;

ELSE
FOR i IN TO n_width— LOOP

Output (i) <= '0';

END LOOP;

END IF;

END PROCESS;

END Behavior;

Figure 7-6: and_gate_n.vhd source

-- Design Name : d flipflop 1
-- Function : A 1-bit D flip-flop

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY d flipflop 1 IS

PORT (D : IN STD LOGIC;
Clock : IN STD LOGIC;
Enable : IN STD LOGIC;
Clearn : IN STD LOGIC;
0 : OUT STD_LOGIC) ;

END d_flipflop 1;

ARCHITECTURE Behavior OF d flipflop 1 IS
BEGIN
PROCESS (Clock)

BEGIN
IF (rising edge (Clock)) THEN

IF (Clearn = '!') THEN
Q <= 1'0";

ELSE
IF (Enable = '!') THEN

Q <= D;

END IF;

END IF;

END IF;

END PROCESS;
END Behavior;

Figure 7-7: d_flipflop_1.vhd source

GXFPGA VHDL Tutorial 113

114 GX3700 User’s Guide

-- Design Name : d flipflop n
-- Function : A n-bit D flip-flop

LIBRARY ieee;
USE ieee.std logic 1164.all;

ENTITY d flipflop n IS

GENERIC (n_width : INTEGER RANGE TO =)7
PORT (D : IN STD LOGIC VECTOR (n_width-! downto
Clock : IN STD LOGIC;
Enable : IN STD LOGIC;
Clearn : IN STD LOGIC;
Q : OUT STD LOGIC VECTOR (n_width-1 downto

END d _flipflop n;

ARCHITECTURE Behavior OF d_flipflop n IS

BEGIN
PROCESS (Clock)
BEGIN
if (rising_edge(Clock)) then
if (Clearn = '!l') then
A: FOR i IN TO n_width-1 loop
Q1) <= "0";
END LOOP;
ELSE
IF (Enable = '1') THEN
Q <= D;
END IF;
END IF;

END IF;
END PROCESS;
END Behavior;

Figure 7-8: d_flipflop_n.vhd source

)

))

-- Design Name : decoder

-- Function : An 5 to 32 decoder (non-behavioral)

LIBRARY ieee;
USE ieee.std logic_1164.all;

USE ieee.numeric std.all;

entity decoder is

port (Decoder In : IN STD LOGIC VECTOR (4 downto 0);
Decoder Out : OUT STD LOGIC_ VECTOR (downto 0));

end decoder;

ARCHITECTURE Behavior OF decoder IS
BEGIN

Decoder Out <="00000000000000000000000000000001" when Decoder In="00000" else

"00000000000000000000000000000010"
"00000000000000000000000000000100"
"00000000000000000000000000001000"
"00000000000000000000000000010000"

This entity was abbreviated due to its

"00001000000000000000000000000000"

"00010000000000000000000000000000"

"00100000000000000000000000000000"

"01000000000000000000000000000000"

"10000000000000000000000000000000"
END Behavior;

Figure 7-9: decoder.vhd source

when
when
when

when

Decoder In="00001"
Decoder_In="00010"
Decoder In="00011"
Decoder In="00100"

repetitive nature.

when
when
when
when

when

Decoder In="11011"
Decoder In="11100"
Decoder In="11101"
Decoder In="11110"

Decoder In="11111";

else
else
else

else

else
else
else

else

GXFPGA VHDL Tutorial 115

116 GX3700 User’s Guide

-- Design Name : and gate 1

-- Function : A two input and gate

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY and gate 1 IS

PORT (Inputl : IN STD LOGIC;
Input?2 : IN STD LOGIC;
Output : OUT STD LOGIC);

END and gate 1;

ARCHITECTURE Behavior OF andﬁgateil IS
BEGIN
PROCESS (Inputl, Input2)

BEGIN
IF Input2 = 'l' THEN
Output <= Inputl;
ELSE

Output <= '0"';
END IF;
END PROCESS;
END Behavior;

Figure 7-10

:and_gate_1.vhd source

-- Design Name : adder

-- Function : An n-bit full adder

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY adder IS

GENERIC (n_width : NATURAL := 32);
PORT (DataA, DataB : IN STD LOGIC VECTOR(n_width-1 downto 0);

Cin : IN STD LOGIC;
Result : OUT STD LOGIC VECTOR(n_width-1 downto 0);

Cout : OUT STD LOGIC);

END adder;

ARCHITECTURE Behavior OF adder IS
BEGIN
adder: PROCESS (DataA, DataB, Cin)
variable carry : STD_LOGIC;

variable isum : STD LOGIC VECTOR (n_width-1 downto 0);
BEGIN
carry := Cin;

for 1 in 0 to n_width-1 loop

GXFPGA VHDL Tutorial 117

isum (i) := DataA (i) xor DataB(i) xor carry;
carry := (DataA (i) and DataB(i)) or (DataA(i) and carry) or (DataB(i) and carry);
end loop;

Result <= isum;
Cout <= carry;
END PROCESS adder;
END Behavior;

Figure 7-11: adder.vhd source

-- Design Name : or gate2

-- Function : A two input or gate

LIBRARY ieee;
USE ieee.std logic 1164.all;

ENTITY or gate2 IS

PORT (Inputl : IN STD LOGIC;
Input?2 : IN STD LOGIC;
Output : OUT STD LOGIC);

END or gate2;

ARCHITECTURE Behavior OF or gate2 IS
BEGIN

Output <= Inputl or Input2;
END Behavior;

Figure 7-12: or_gate2.vhd source

118 GX3700 User’s Guide

LIBRARY ieee;
USE ieee.std logic_1164.all;

ENTITY or gated4 IS
GENERIC (n_width : NATURAL := 32);

PORT (Inputl : IN STD LOGIC VECTOR (n_width-1 downto 0);
Input2 : IN STD LOGIC VECTOR (n_width-1 downto 0);
Input3 : IN STD LOGIC VECTOR (n_width-1 downto 0);
Input4 : IN STD LOGIC VECTOR (n_width-1 downto 0);
Output : OUT STD LOGIC VECTOR (n_width-1 downto 0));

END or gated;

ARCHITECTURE Behavior OF or gated4 IS
BEGIN

Output <= Inputl or Input2 or Input3 or Inputéd;
END Behavior;

Figure 7-13: or_gate4.vhd source

In tutorial_design_top.v, we will now write the code to describe our PCI Address Decoder Circuit. Latch both the
Address and Write Enable lines using the PCI Clock. Decode the 5 bit Address lines into a 32-bit bus named
DecodedAddr. This decoded bus is ANDed with the FPGA’s CS[1] to define our PCI Address Decoded Select
lines.

Additionally, we will define our Write Enable (WE) lines in this code block. We will use this later, along with Read
Enable, to read and write to registers.

-- PCI Address Decoder Circuit

inst: decoder PORT MAP (LatchedAddr, DecodedAddr) ;

inst2: and _gate n GENERIC MAP (°~) PORT MAP (DecodedAddr, CS(!), Sel);

inst3: and gate n GENERIC MAP (-) PORT MAP (Sel, LatchedWrEn, WE);

inst23: d flipflop 1 PORT MAP (WrEn, PCIClock, NC Ena, NC _Rst, LatchedWrEn);

inst24: d flipflop n GENERIC MAP (5) PORT MAP (Addr, PCIClock, NC Ena, NC_Rst, LatchedAddr);

Figure 7-14: PCI Address Decoder Circuit

You will notice that we used a few undefined symbols in this last section: nc_ena and nc_rst. These are
placeholders for enable and reset lines that our various components can take advantage of. For this tutorial, | have
chosen not to use enable or reset lines at all so we should add the following code to tutorial_design_top.v to explicit
set these wires to always enabled, never reset.

GXFPGA VHDL Tutorial 119

Now that the PCI address decoder circuit is complete, we can feed the appropriate bits from the WE bus to D Flip
Flops that will store data clocked in from the PCI data lines. For example, the first double word in PCI memory
(representing the first number to be summed) will be written to a D Flip Flop with its enable line tied to WE[0] (the
first bit in the WE bus). The second double word to be added will be written to another D Flip Flop with its enable
line tied to WE[1]. Finally, the PCI Clock signal (33Mhz) will be used as the clock source of the D Flip Flops. Note
that each bit of the Sel and WE buses represent a consecutive double word address (bit O corresponds with byte 0,
bit 1 corresponds with byte 4, bit 2 corresponds with byte 8 etc.)

First we start by creating an extend circuit to deal with any timing issues with the WE signal. Then we will create
some Flip Flops to latch inputs to the adders. We will use a placeholder named LatchedFDt as the input to the D
Flip Flops. Eventually the PCI data lines will drive these inputs. Wire the outputs of the D Flip Flops to the Adder
component. The output of the adder, Sum, will be used as an output later.

-— WE ext 1 C cult - Extenc ite enabl mitigate timlng 1ssues

inst26: d flipflop n

(WE, PCIClock, NC Ena, NC Rst, LatchedWwE);

GENERIC MAP () PORT MAP

inst27: d flipflop n GENERIC MAP (-”) PORT MAP (LatchedWE, PCIClock, NC Ena, NC Rst,
LatchedWE2) ;

inst28: d flipflop n GENERIC MAP (-~) PORT MAP (LatchedWE2, PCIClock, NC Ena, NC Rst,
LatchedWE3) ;

inst30: or gate4 GENERIC MAP (:”) PORT MAP (LatchedWE, LatchedWE2, LatchedWE3, WE,
WE_EXT) ;

-— A e C cuit - Latch the & e > clude adde

inst4: d flipflop n GENERIC MAP () PORT MAP (FDt LoopBack, PCIClock, WE EXT ("), NC Rst,
AdderA) ;

inst5: d flipflop n GENERIC MAP () PORT MAP (FDt LoopBack, PCIClock, WE EXT(), NC Rst,
AdderB) ;

inst7: adder GENERIC MAP (- -) PORT MAP (AdderA, AdderB, NC Cin, AdderBuff, NC Cout);

Figure 7-15: WE Extend Circuit and Adder Circuit

Before moving on we must first extend the RdEnN signal. Add the following to the tutorial_design_top.v:

-- RdEn to 2 PCI Circuit

instl: or gate2 PORT MAP (RdEn, LatchedRdEn, RdEn Extend);

inst8: d flipflop_ 1 PORT MAP (RdEn, PCIClock, NC_Ena, NC_Rst, LatchedRdEn);
instl2: and _gate n GENERIC MAP (32) PORT MAP (Sel, RdEn_Extend, RE);

inst2l: d flipflop 1 PORT MAP (LatchedRdEn, PCIClock, NC Ena, NC Rst, LREAD DV);

Figure 7-16: RdEnN to 2 PCI Circuit

--— RE extend circuit - Extend read enable to mit ligate timing i1ssues

instl8: d flipflop n GENERIC MAP (- ”) PORT MAP (RE, PCIClock, NC Ena, NC Rst, LatchedRE);

instl9: d flipflop n GENERIC MAP (- ~) PORT MAP (LatchedRE, PCIClock, NC Ena, NC_Rst,
LatchedRE2) ;

inst20: d flipflop n GENERIC MAP (-~) PORT MAP (LatchedRE2, PCIClock, NC Ena, NC Rst,
LatchedRE3) ;

inst22: or gated GENERIC MAP (°”) PORT MAP (LatchedRE, LatchedRE2, LatchedRE3, RE,

RE EXT) ;

Figure 7-17: RE Extend Circuit

We also create a Read Data Valid output pin, LREAD_DV. This comes from a D-Flipflop with the PCIClock as an
input clock and the RdEn as the input data. The D-Flip Flop also creates our extender for our ReadEnable.

120 GX3700 User’s Guide

The inputs to the D Flips Flops can now be wired to the PCI data lines (FDt). We need to clean up the FDt signal as
is comes back into our circuit by adding the D-FlipFlop.

FDt <= FDt out value when RE_EXT /= X"00000000" else (others => 'Z'");

process (PCIClock, RE EXT, AdderA, AdderB, AdderBuff, LPM CONSTANT, FDt)
begin
if (RE_EXT(-)="1")
then FDt_out value <= AdderBuff;
elsif (RE_EXT(0)='l")
then FDt_out_value <= AdderA;
elsif (RE_EXT(!)="'1")
then FDt_out value <= AdderB;
elsif (RE_EXT(:l)='l")
then FDt out value <= LPM CONSTANT;
end if;
FDt_in value <= FDt; --store the input value

end process;

Figure 7-18: FDt in/out signal assignment

Now that the design has been completed, a revision number should be added so that the end user can read it back
from the PCI bus at the 32" register double word location (byte address 0x7C).

Including a revision number constant to the design is a Marvin Test Solutions standard practice that we recommend
end users to follow. The revision constant is 32 bits long and is read as a hexadecimal number such as 0x3564A000.
The first two digits of the hexadecimal number represent the company, in this case 35 is for Marvin Test Solutions
designs. The next two digits are the design specific code, 64 in this case. And the last 4 digits, A0QO, is the revision
of the design.

Add the following to tutorial_design_top.vhd in the section where signals are defined:

SIGNAL LPM CONSTANT : STD LOGIC_ VECTOR(downto 0) := X"3564A000";

Figure 7-19: Symbol Properties

GXFPGA VHDL Tutorial 121

Phase 2: Creating the FPGA Design - 2to 1 Clock Mux

This design will output either the PCI Clock (33Mhz) or the 10Mhz clock to FlexIO Channel 65 (Check connectors
tables for the correct pin location) depending on what was written to the 4" double word in the PCI register space
(byte offset OxC). A 1 will select the 10Mhz clock signal, and a 0 will select the PCI clock signal.

Design

You will now build upon the tutorial project to add the functionality of a 2 to 1 Clock Mux. The 10Mhz clock will
be brought into the design by an input pin. The PCI Clock signal input pin is already present in the Phase 1 circuit,
so this will be reused. FlexIO[65] (10 Channel 65) will be used to output the selected clock to the outside world.

process (WE_EXT (%))
begin
if (rising edge (WE EXT(7)))
then LatchedFDtO <= FDt (U);
end if;

end process;

FlexIO (") <= PCIClock when LatchedFDtO='(0"' else PXI10Mhz;

Figure 7-20: Clock Mux Circuit

FDt[0] is the first bit of the PCI data bus. This bit can either be 0 or 1, to indicate which clock source to choose.
WE_EXT][3] is the 4" bit from the decoded PCI Address. When this bit is high, it indicates that the PCI Bus is
addressing the 4™ double word (byte offset 0xC) of the Register space for the GX3700. In our case, the value of this
double word is used to select which clock is selected by our Mux.

At this point the design is complete, continue with the next sections to generate SVF or RPD files and load your
design to the GX3700.

122 GX3700 User’s Guide

Configure Project to Output SVF and RPD Files

To ensure that a SVF file is generated upon project compilation, go to the Assignments, Device ... and click on the
Device and Pin Options button. Then click on the Programming Files and verify that the Serial Vector Format
File checkbox has been selected.

¥ Device and Pin Options - tutorial_design_top x|
Category:

- General Programming Files

- Configuration

%w Fles R optional programming file formats to generate. For device families with multiple

- Unused Pins] configuration schemes, if you select a passive configuration scheme in the Configuration tab, the

- Dual-Purpose Fins Quartus II software always generates an SRAM Object File {.sof) and either @ Partial SRAM Object

- Capaditive Loading File {.psof}) or a Programmer Object File {.pof), depending on the configurable device you are

- Board Trace Model targeting.

- 10 Timing

- Voltage ’ . ;

- Pin Placement [Tabular Text File (. ttf) IV serial Vector Format File {.svf)

- Error Detection CRC [~ Raw Binary File (.rbf) [™ |1 System Configuration File (isc)

- CwP Settings

[™ Jam STAPL Byte Code 2.0 File {jbc) [~ IJEDEC STAFL Format File (.jam)

[Compressed

[~ Hexadecimal {IntelFormat) Output File { hexout)

Start address: I[J Count: IUp ;I

Description:

Generates a Tabular Text File (. ttf) containing configuration data that an intelligent external
controller can use to configure the target device.

Beset |

oK Cancel | Help |

Figure 7-21: Select SVF as output file

Now click on the Configuration choose Active Serial Configuration Scheme, check Use Configuration Device
checkbox and select EPCS64 as the configuration device from the drop down selection. Finally click on OK twice
to exit the settings dialog boxes.

GXFPGA VHDL Tutorial 123

4 Device and Pin Options - tutorial_design_top x|
Category:
e
- Programming Files Specify the device configuration scheme and the configuration device. Note: For HardCopy
- Unused Pins designs, these settings apply to the FPGA prototype device.
- Dual-Purpase Pins
g:ap?duﬁr\;iéﬁgéﬁ Configuration scheme: |Acti\u'e Serial {can use Configuration Device) j
IID 'I'lrning . :
-~ Voltage Configuration mode: ISEndard ;I
-+ Pin Placement —Configuration device
- Error Detection CRC
- CwP Settings |EPCse4 =l
¥ Use configuration device:
Configuration Device Options ... I
Configuration device IO voltage: |Aub:u ;I
™ Force VCCIO to be compatible with configuration 1/0 voltage

¥ Generate compressed bitstreams

Active serial dodk source: vI

[™ Enable input tri-state on active configuration pins in user mode

Description:

The method used to load data into the device. Three configuration schemes are available:
Passive Serial (PS); Fast Passive Parallel (FPF) and Active Serial (AS).

Reset

Figure 7-22: Select Configuration Device

124 GX3700 User’s Guide

Compile an Example Project and Build RPD and SVF Files

Click on Processing menu tab and choose Start Compilation to start the compilation process for the example
project. After the process, has ran successfully, you should now see in Quartus Il something similar to the figure
below. The green check marks indicate success and the red X indicates failure. The process will succeed only when
there is no error. There may or may not be any warning. If there is any warning, make sure that it is OK for the
design before moving forward. For this tutorial design, ignore all warnings.

Quartus I - C:/Projects/GxFpga/Examples/Quartus/Gx3700/ Tutorial{Schem/tutori -|ol x|
Ele Edit View Project Assignments Processing Tools Window Help &
= ; >
|DSEH@ & & o o ||[uom oo HEY 2 @8 S TI> 0B 8% 0@ |
Project Navigator x| & Compiation Report 0| @ ‘wtorial_design_top.bdf 2|
<1 | [Table of Contents a
Entity " Flow Status Successful - Tue Oct 04 32011
11.0 Build 157 04/27/2011 5J Web Edition
By Stratix ITT: EP3SL50F780C3 EE Flow Settings tutorial_design_top
BN ttorisl_design_ton & BB Flow Non-Default Global Settings (g lam i
. EE Flow Elapsed Tme Stratix 11l
BB Flow 05 Summary EP35L50F780C3
B FlowLog el
[Analysis & Synthesis 1.459 138,000 (%)
\pm_constant CAFE Fitter 94/ 19,000 (
altpciav_fifazext_sram_rdiifo 30 Assembler 1586 /35,000
altpcia_fifo:ext_sram_wrffo (1 TimeQuest Timing Analyzer e —
local_regsiinst -~ Total virtual pins 0
dma_mem_adrinsti - Total block memory bits 1,142,784 [1,880,064 (61 %)
5 ~ DSP block 18-bit clements 0/215(0 %)
Total PLLs 1/4(25%)
& vierarchy | B Fies | oF Design Units | Total DlLs 0/4(0%)
% [2ype]essase -l
i) Info: Elaborating entity "led driver" for hisrazchy "led_driver:inst3"
A Wa (10230) : Verilog HDL assignment warning at LedDrivez.v(64): truncated value with size 32 to match size of target (24)
i) Info: v "localbus dat _mux" for hierarchy "localbus dat mux:inst7&"
i) Inzo: "altpciav fifo" for hie "altpciav fifoiext sram rdfifo”
i) Info: Elaborating entity "altsyncram® for hierarchy "altpciav fifoiext sram rdfifo|altsyncram:fifo ram”

L) Info: Elaborated megafunction instantiation "altpciav_fifo:ext_sram rdfifo|altey
B} Info: Instantiated megafunction "altpciav_fifo:ext_sram rdfifo|altsyncram:fifo
G}l Info: Found 1 design units, including 1 entities, in source file db/altsyncram :
L) Info: Elaborating entity "altayncram 1ldnl"™ for hierarchy "altpciav fifo:ext sram :
1) Info: Elaborating entity "clock mux_logic® for hierarchy "clock mux logic:inst2®

cram:fifo_ram"
m" with the following pazametes:
1.tdf

J) Info: Elaborating entity "RAM32x32" for hierarchy "RAM32x32:inst5"

L) Info: Flaborating entity cram" for hierarchy "RAM32x32:instS5|altsyncram:altsyncram component”

i) Info: Elaborated megafunction instantiation "RAM32x32:insts|altsyncram:altsyncram component”

E) Info: Instantiated megafunction "RAM32x32:instS|altsy m:altsyncram component” with the following parameter:
B}l Info: Found 1 design units, including 1 entities, in source file db/altsyncram 9spl.tdf

1) Info:

1) Info: Elaborating entity "altpll"” for hiera nstd|altpll:altpll_component”

i) Info: Elaborated megafunction instantiation "pll 0:inst€|altpll:altpll_component”

B} Info: Instantiated megafunction "pll 0:inst8|altpll:altpll_component™ with the following parameter:

B} Info: Found 1 design units, including 1 entities, in source file db/pll 0 altpll.v

L) Info: Elaborating entity "pll 0_altpll™ for hierarc _0:inst8|altpll:altpll component|pll 0 altpll:auto_generated”

[Warning (10230): Verilog HDL assignment warning at ClockMuxLogic.v(72): truncated value with size 32 to match size of tax

y "altsyncram 9spl" for hierarchy "RAM32x32:inst$|altsyncram:altsyncram_component |altsyncram Sspl:
1) Info: "up_counter:instg"
i) Info: instan”

dfifo|altsyncram:fifo_ram|altsyncram ldnl:auto gensrated”

get (2)

:auto_generated"”

il

Messages

Message: D of 1803 Location:

=
310, 604 [100% ODWOLSE

Figure 7-23: Compilation Tools and Status

The SVF file will be generated after the project compilation has finished. The Compilation Task window will show

green check marks next to each major task to indicate completion.

GXFPGA VHDL Tutorial 125

In order to generate RPD file go to File, Convert Programming Files ...

Select Raw Programming Data File (.rpd) as the Programming file type and tutorial_design_top.rpd as the File
Name. Click on the Add File button and select tutorial_design_top.pof. The .pof file should now appear below the
POF Data node as shown below. Finally, click the Generate button to create the RPD file.

o

(0l x|

1t Convert Programming File - C:/Projects/GxFpga /Examples/Quartus/Gx3700/ Tutorial/tutorial_design_top - &

File Tools Window

Specify the input files to convert and the type of programming file to generate.
You can also import input file information from other files and save the conversion setup information created here for
future use.

—Conversion setup files

Open Conversion Setup Data... Save Conversion Setup...

—Output programming file

Programming file type: |Raw Programming Data File {.rpd)

Options... Configuration device: |EPC 15 LI Mode: Active Serial

File name: |tutoria|_design_top.rpd

Advanced... | Remote /Local update difference file: MONME

[~ Memory Map File

—Input files to convert
File/Data area Froperties Start Address Add Hex Data
= POF Data Page_0
- tutorial_design_top.pof EPCS64 Add Sof Page

Add Eile...
Remove
]
Down

Properties

Generate Cloze

T BRERREE T J) L

Figure 7-24: Convert Programming Files Dialog Box

126 GX3700 User’s Guide

Simulating the Design

To simulate the design, we will use ModelSim application from Altera. You can download the software for free
form the Altera website. There is a test bench for this tutorial that is already created for you inside the
GXFPGA\Examples\Quartus\GX3700\Tutorial VHDL.

Follow these steps to simulate the design:

1. Open the ModelSim application:

[] ModelSim ALTERA 10.1d - Custom Altera Version : _(ol x|
File Edit View Compile Simulate Add Transcript Tools Layout Bookmarks Window Help

||# Reading C:/altera/13. 1/modelsim_ae tcl fvsim fpref. td ;[
||# Loading project Tutorial_tb |
| ModelSim = |
| =

|Project : Tutorial_tb |<No Design Loaded = <MNo Context= “

Figure 7-25: ModelSim Main Window

GXFPGA VHDL Tutorial 127

2. Click File=> Change Directory and choose the sim folder under the Tutorial folder. At this point the ModelSim
should display the simulation pins:

EJHodeISlmALTERA 10.1d - Custom Altera Version S : 10 =]
File Edit View Compile Simulate Add Library Tools Layout Bookmarks —Window Help

|IX &l 4

e 2, . o AT
|l brary s HiA x| Wave - Default

sl work
#fll 220model
&l 220model_v
=i, altera
=l altera_insim
| 1|—M altera_lnsim,
| =l altera_mf
1|—M altera_mf_v
=l altera_ver
=l altoxb

| 2, altaxb_lib
1|—M altgxb_ver
ﬂ—m arriagx
1|—M arriagx_hssi
| =l arriagx_hssi
1|—M arriagx_ver
ﬂ—m arriaii |
&l arriail_hssi J
KEE]

“Transmpt P T T e

||# Loading project Tutorial_tb
||cd J/GEOSERVER,/Shared /Orrk [GxFPGA ftutorial_design_simple_adder fsim J
-

||# reading C:\altera\13, 1\modelsim_ae\win32aloem/. . fmodelsim.ini

ModelSim =

|<No Design Loaded = |<N0 Context: /

Figure 7-26: ModelSim Tutorial Simulation

128 GX3700 User’s Guide

3. Click Tools=> Tcl>Execute Macro... and choose sim.tcl, and click Open. When ModelSim asks to close the
current project, click Yes. The screen should appear like the screen below:

[] ModelSim ALTERA 10.1d : o - o] x|
File Edit View Compile Simulate Add Wave Tools Layout Bookmarks Window Help

A S sRBL2O-AENM|| N o4 alb]
& ¢ @= & lfl—mnnsﬂlml@@ sme]

185 fault |
|¥|Instance
—|—! Tutorial_tb | | il
- 12 PRI {Tutorial_th/UUT/PXI10Mhz
@ FINTIALE 5 [Tustorial_th/UUT/PCICIock
‘_’ #INITIALS PCIClock § | Mutoris_thuUT/CS
P #ASSIGN | R ||| %< /Tutorial_th /LT /Addr
m—g #aLwAYs) [Bed ; T
i . i I
[m WSlm_capaut; WrEn [Tutorial_th/UUTWrER

PX110Mhz
LREAD DV
FlexI0
FDt
WriteData

n— outputs

w [Tutorial _thUUT Flex10

4. fTutorial_th/ULTAREAD_DV

| B'le T
| 4. [Tutorial_thUUTFDt

:@_JJJJJ = wEFws

F : Transcrlpt

||# Simulation Breakpoint: Break in Module Tutorial_tb at .. /testbench/Tutorial_tb.v line 161 ;‘
| # MACRO \WGEOSERVER \Shared\Orrk\GxFPGA\tutorial_design_simple_adder\sim'sim - Copy. td PAUSED at line 34 |

VSIM{paused) = -

[0 ps to 541800 ps [Project : Tutorial_th [Now: 516 ns Delta: 0 [sim: fTutorial_tb/#ALWAYS#90

Figure 7-27: Simulation of Design

Load Gx3700 with SVF File

GXFPGA VHDL Tutorial 129

Start the GX3700 Panel (from the Windows Start menu, Marvin Test Solutions, GxFpga) and initialize the
instrument. Next, click on the Volatile radio box and then click on the Browse Button (...) to select the newly
generated SVF file (tutorial_design_top.svf). Finally click on the Load button to begin programming the card. You
will see the progress bar indicate the status of the load. Once the load has completed, the status bar should be

unfilled.

) FPGA Board (0x108)
Setup | 1/0 About
FPGA
(@ Volatle () EEPROM Load from EEPROM

File : |C:\Program Files (86)\Marvin Test Solutions\GxFpc|f; .

EEPROM
Last Upload On : jN'Ion Jun 16 10:25:30 2014

File Name - G'X37'00_user_§L'770_vr(r)DO§

Initiglize... Reset Apply Close

Help

Figure 7-28: Software Front Panel

130 GX3700 User’s Guide

Testing the Design

Now that the design has been completed, compiled and loaded into the GX3700, we can move on to the testing.

There are two ways to access the FPGA, either through the software front panel or through the driver API DLL. We
will demonstrate the programming method using ATEasy to access the driver APl DLL.

Adder Testing

The software front panel will be used to test Phase 1 of the design which adds two 32 bit numbers together. Click on
the 1/0 Tab to get started. The Adder phase is controlled through the FPGA Register space.

Offset 0x0 points to the first 32 bit number that will be summed and offset 0x4 points to the second 32 bit number
that will be summed. Write values to both these locations.

The sum can be obtained by reading the 32 bit value at offset 0x8. Verify that the correct sum is read back as shown
in Figure 5-31.

| FPGA Board (0x108) > HIEH |
|
Setup | 1/0 About
FPGA Registers FPGA Mem BAR2
Offset : | (00008 Offset : |(x00000000
Data: |0x0000000F Wite Data: |(x00000000 Wiite
0x18 ' ; Read
FPGA Mem BAR3 FPGA Mem BAR4
Offset : | 2x00000000 Offset : | (x00DD0000D
Data : | (00000000 Wiite Data : |(x00000000 Write
Read Read
Initialize.... Reset Apply Close Help

Figure 7-29: Using the Software Front Panel to read back the Sum

GXFPGA VHDL Tutorial 131

Clock Mux Testing

The software front panel will once again be used to test Phase 2 of the design. This part of the design uses a Mux to
select between the PCI Clock and the 10 Mhz reference clock. The selected clock is output to I/0O Channel 63 which
is located on pin 31 on the Flex 1/0 J2 connector of the GX3700. The Mux is controlled through the FPGA Register
space.

Writing a 0x0 to offset OXC will route the PCI/PCle Clock signal to I/0O Channel 63. Writing 0x1 to the same offset
will route the 10 Mhz clock to this same channel. Try switching between both values while monitoring pin 31 of J2
with an oscilloscope. You should see the appropriate clock signals.

132 GX3700 User’s Guide

GX3700 Expansion Boards 133

Chapter 8 - GX3700 Expansion Boards

The GX3700 requires a piggy-back expansion board to connect to the outside world, a simple; feed through
expansion board is provided. Custom expansion boards can be developed by customers. The following information
is provided to assist the user with developing expansion boards. This information is for both, GX3700 and 3700e.

Expansion Board Design Guide

The expansion board mates with the GX3700 using one connector (P8) and two mounting holes. Two other
connectors — J1 and J2 — exist on the expansion board and are attached to the front panel when the expansion board
is mounted. Figure 6-1 depicts a bottom view of the expansion board and Figure 6-2 and Figure 6-3 detail the
complete GX3700 with the feed through expansion board assembly.

Front Panel J1 and J2 Connectors Front Panel J3 and J4 Connectors

J2 Connector
(J2A and J2B)

J1 Connector
(J1A and J1B)

...

[l 1181 280J0-AYE

Figure 8-1: GX3701 Expansion Board — Bottom View

134 GX3700 User’s Guide

b
b)

g

eacn

P1 Connector

T 2A 1301001003
IYCPYRVE
u10

R

un

NI IIIIND

P8 Connector

¥

th;

Figure 8-2: GX3700e Assembly with Expansion Board

GX3700 Expansion Boards 135

-

RO
AL AN AL ED a4 an se s

NS
\d \QL

LIS DU SINOD M

g
-
—O0Z—LSVvZ ‘Na

MDD
S84 O/\ %3

<3
wwikihia vl

VSN AL ™ 3w
A3E 00

~
S\NPOW u&:r\o;_“. o

Figure 8-3: GX3700e with Expansion Board Mounted

caco

136 GX3700 User’s Guide

cacn

P1 Connector

P8 Connector

M

Figure 8-4: GX3700 Assembly with Expansion Board

GX3700 Expansion Boards 137

\3 \OLEXD

N\ NN

o
5
)

'ND a
—O0Z—LSvZ Na

5
7
z
’
i
g8
T
) 2

AU PR A O/ %9
LSS JunsSaHoah: m

AN3E Q0

~
SANpow LWbBno

Figure 8-5: GX3700 with Expansion Board Mounted

138 GX3700 User’s Guide

Mechanical Layout Guide

The locations of the mounting holes and connectors are critical to ensure a proper fit between the GX3700 and the
expansion board. Figure 6-6 describes the mechanical details of a typical board and the locations of connectors and
mounting holes. The figure presents a transparent view of the board from the top, with dimensions for critical
component locations. The coordinates for the connectors are pointing to the component reference point. For P1 it is
the middle between pads 1 and 2 of the footprint, as shown in Figure 6-7. For J1 and J2 it is the center of pad Al of
the footprint, as shown in Figure 6-8.

Note: Dimensions are in mils unless noted otherwise.

2mm X 45 Degrees 2 PL

N

88.0mm
+/—0.4mm
IIIIIIIIIIIIIIIIIIIIIIIII_IIIIIIIIIIIIIIIIIIIIIIIIII_IIIIIIIIIIIIIIIIIIIIIIIIII_IIIIIIIIIIIIIIIIIIIIIIIIII:|
ORRAERRNTONIY_—— FOARRORORO AR DR ORRORRRRIRORNOONON Ovnotnrannnn o _*
—2251075
&
g £
d-
0,0 2500,0 O O
O |
00 ~.
+
Il Sb
B B g G e
—545,—-1682

.................
................

Ri’ﬂ 24,-1886

Figure 8-6: Mechanical Details — Top View of Typical Board. Dimensions are in mils unless noted otherwise.

GX3700 Expansion Boards 139

O
1R

Figure 8-7: Component P1 Reference Point

Q ()
CELIIELIIIE008 © g
[OJOYOXONONONONOYOYONOXONOYONONONOI

O COOCCXCXCXCXS
| I @@@G)@@@@@@@®@®@@@@®®®@@®@@@®@®@®@@

l%@@@@@@@@@@@@@@@@ l
®

Figure 8-8: Components J1, J2 Reference Point

140 GX3700 User’s Guide

Figure 6-9 describes the recommended maximum dimensions for the expansion board and the recommended
maximum component height. The maximum board area is about 110 Sq centimeters or about 17 sq inches.

50mm

T iMaximum component height: |

‘Top side — 1mm 1

J 'Bottom side — 8mm 1
"""""""""""""" 4----1---| Maximum component height:
95mm I 20mm 130mm | iTop side — 1mm i

iBottom side — 12mm

}"'""“".“""‘"“‘“‘mmi"“‘w""

75mm Maximum component height: :

Top side — 1mm :

45mm Bottom side —7mm !

] 98mm

Figure 8-9: Mechanical Details — Top view, Maximum Board Dimensions

GX3700 Expansion Boards 141

Expansion Board Connectors and Electrical Requirements

P1 is a High Speed Terminal Strip with Rugged Ground Plan manufactured by Samtec (http://www.samtec.com/). It
has a middle bar that is used for ground and power connections. The part number for P1 is QFS-104-06.25-SL-D-A.
Figure 6-10 shows a schematic diagram of P1.

P1A QFS208 P1C QFS208
vee.l 2 1 >25v FIxI0S3 106 105 Flxiosa
FIxIO55 FIxIO56
4 3—— 108 107
FIxIO57 FIxIO58
6 5 110 109
FIxIO59 FIxI060
8 7 112 111
FIxI061 FIxI062
Lo S FIxI063 m im FIxIO64
X112 11j—x 116 115
FIxI097 FIxI096
X— 14 13—X 118 117
FIxI098 FIxI095
X—116 15— 120 119
FIxI099 FIxI094
K| 17— FIxI0100 m FIxI093
' . X—20 19—xX X 124 123 X
FIxDif31_N = 2 21 ~= FIxDif32_N FIxI0101 126 1 FIx1092
FDif3l P~ P 3B __~— FIxDif32 P FIxI0102 o o FIxI091
FIxDif29 N~ = 55 —P = FIxpif30 P FIxI0103 a0 i FIxI090
FIxDif20 P == P50 = ~—_FIxDif30_N FIxI0104 n i FIxI089
FIxDif27_P Pl%) FIXDif28_P FIxI0105 o o FIxIO88
FIxDif27_N 32 3 FIxDif28 N FIxI0106 135 135 FIxIO87
FIxDif25_P P 3 FIxDif26_N FIxI0107 0 e FIxIO86
FIxDif25 N o = FIxDif26_P FIxI0108 0 i FIxIO85
FIxDif23 P Pl = FIxDif24 N FIxI0109 e T FIxIO84
FIxDif23 N o P FIxDif24_P FIxI0110 n e FIxIO83
FIxDif21 N g o FIxDif22_N FIxIO111 e e FIxIO82
FIxDif21_P Pl pe{ FIxDif22_P FIxI0112 e e FIxIO81
FIxDif19_P Plus e FIxDif20_N FIxI0113 o i FIxIO80
FIXDIf19 N =~ o S|P == Fixpii20 P FIxIO114 e e FIxIO79
FIxDif17_P Pleo pil FIxDif18 N FIxIO115 2 = FIxIO78
FIXDIf17 N ~= 22 A 5| P /= FDIf1gP FIxI0116 e i FIxIO77
~= - Net is part of Differential Pair
P1B QFS208 L P1D QFS208
FIXDif15_P Pley) FIXDif16_P FIxI0117 - 5 FIxIO76
FIxDif15_N = ;‘5’ FIxDif16_N FIxI0118 e a FIxIO75
FIXDif13 P Plig = FIxDif14_N FIxI0119 e e FIxIO74
FIxDif13 N = P FIxDif14_P FIxI0120 o e FIxIO73
FIxDif11 N 5 2 FIXDif12_ N FIxI0121 e s FIxIO72
FIxDif11 P i P FIxDif12_P FIxI0122 0 e FIxIO71
FIxDif9_N 5 ol FIXDif10_P FIxI0123 s a FIxIO70
FIxDif9_P Ples & ~_=_FIxDif10 N FIxI0124 i 2 FIxI069
FIxDif7_N S FIxDif8_N FIxI0125 e e FIxIO68
FIxDif7_P Pl 71—P FIxDifg_P FIxI0126 176 175 FIxI067
FxDifs P == P e FIxDif6_N FIxI0127 o i FIxIO66
FIxDif5_N P FIxDif6_P FIxI0128 FIxIO65
FIxDIf3_N w B FIxDif4_P m oy
——Xbis N o - — < - FIXDUA B X —
FIxDIf3_P Pl m FIxDifd_N . PbIDO e Fspr3 RS
FIxDifi P ~= P Y ~= Fxoiz N Piggy Back ID PbiD1 g FSpr2 R6
! = 82 81 e . 186 185
FIXDif1 N 7 P FIxDif2_ P _h T, <y PbiD2 o o FSprl R7
TFExioss el = Fixiozs _—Open="1", GND="Qrbios - FSpr0__ . _R8
FIxIO35 P FIxIO36 10.0K i
FIxIO37 P gg 87 p FIxIO38 Master Clear mclr S igi 31 X o1y 0.0 Function ID
FIxI039 o FIxI040 g N
FlxI041 P 3421 A5 FIxI042 i;il’ J
FIxI043 %3 FxI044 Use pull-ups to 3,3V
% 95 199 ’
_Flxioa5 = P| 98 o7]—E FIx1046 20—
FIxI047 FIxl048 or pU“-dOWI’]S.
FIxI049 2 <
FIxIO51 % Pyt o Y
i cs
0.1uF

J1 and J2 are used to connect the expansion board signals to the user application. Each one is a dual VHDCI 68 pins.
There are few vendors for these connectors; one option is Honda PN HDRA-E68W1LFDTC-SL+. Each connector
has two parts A and B. J1A corresponds to J2 on the front panel, J1B to J1, J2A to J4 and J2B to J3 on the front
panel. Customers can us other connectors for their application but that will require changing the design of the front
panel.

The following table lists the assignments for the expansion board signals.

142 GX3700 User’s Guide

P1 Expansion Board Connector Pin Assignment

The following table describes the GX3700 expansion board P1pin mapping to the front panel user connectors J1-J4,
and FPGA pins:

Expansion Front FPGA pin FPGA Pin Remark

Board Panel User Description Name

Connector Connector

P1-82 J1-1 Flex Diff 1P AG22

P1-84 J1-35 Flex Diff 1N AH22

P1-83 J1-2 Flex Diff 2P AG19

P1-81 J1-36 Flex Diff 2N AF19

P1-80 J1-3 Flex Diff 3P AH21

P1-78 J1-37 Flex Diff 3N AH20

P1-77 J1-4 Flex Diff 4P AD18

P1-79 J1-38 Flex Diff 4N AE19

P1-74 J1-5 Flex Diff 5P AG18

P1-76 J1-39 Flex Diff 5N AH19

P1-75 J1-6 Flex Diff 6P AE18

P1-73 J1-40 Flex Diff 6N AF17

P1-72 J1-7 Flex Diff 7P AH18

P1-70 J1-41 Flex Diff 7N AH17

P1-71 J1-8 Flex Diff 8P AE17

P1-69 J1-42 Flex Diff 8N AF16

P1-68 J1-9 Flex Diff 9P AG16

P1-66 J1-43 Flex Diff 9N AH16

P1-65 J1-10 Flex Diff 10P AD16

P1-67 J1-44 Flex Diff 10N AE16

P1-64 J1-11 Flex Diff 11P AG15 Dedicated Clock Input
P1-62 J1-45 Flex Diff 11N AH15 Dedicated Clock Input
P1-63 J1-12 Flex Diff 12P AD13

P1-61 J1-46 Flex Diff 12N AE13

P1-58 J1-13 Flex Diff 13P AG13 Dedicated Clock Input
P1-60 J1-47 Flex Diff 13N AH14 Dedicated Clock Input
P1-59 J1-14 Flex Diff 14P AD12

P1-57 J1-48 Flex Diff 14N AE12

P1-54 J1-15 Flex Diff 15P AG12

P1-56 J1-49 Flex Diff 15N AH13

P1-53 J1-16 Flex Diff 16P AF10

P1-55 J1-50 Flex Diff 16N AF11

P1-50 J1-17 Flex Diff 17P AH11

GX3700 Expansion Boards 143

Expansion Front FPGA pin FPGA Pin Remark

Board Panel User Description Name

Connector Connector

P1-52 J1-51 Flex Diff 17N AH12

P1-51 J1-18 Flex Diff 18P AE9

P1-49 J1-52 Flex Diff 18N AF9

P1-46 J1-19 Flex Diff 19P AG10

P1-48 J1-53 Flex Diff 19N AH10

P1-47 J1-20 Flex Diff 20P AF8

P1-45 J1-54 Flex Diff 20N AE8

P1-44 J1-21 Flex Diff 21P AG9

P1-42 J1-55 Flex Diff 21N AH8

P1-43 J1-22 Flex Diff 22P AE6

P1-41 J1-56 Flex Diff 22N AF6

P1-38 J1-23 Flex Diff 23P AG7

P1-40 J1-57 Flex Diff 23N AH7

P1-39 J1-24 Flex Diff 24P AE5

P1-37 J1-58 Flex Diff 24N AF5

P1-34 J1-25 Flex Diff 25P AG6

P1-36 J1-59 Flex Diff 25N AH6

P1-35 J1-26 Flex Diff 26P AF2

P1-33 J1-60 Flex Diff 26N AG1

P1-30 J1-27 Flex Diff 27P AH4

P1-32 J1-61 Flex Diff 27N AH5

P1-29 J1-28 Flex Diff 28P AE2

P1-31 J1-62 Flex Diff 28N AF1

P1-28 J1-29 Flex Diff 29P AG4

P1-26 J1-63 Flex Diff 29N AH3

P1-25 J1-30 Flex Diff 30P AD1

P1-27 J1-64 Flex Diff 30N AE1

P1-24 J1-31 Flex Diff 31P AG3

P1-22 J1-65 Flex Diff 31N AH2

P1-23 J1-32 Flex Diff 32P AC2

P1-21 J1-66 Flex Diff 32N AC1

P1-A,C J1-34,68 GND Power

P1-B J1-33,67 User 3.3V Power

P1-86 J2-1 Flex1033 AH23 Routed to Expansion as Flex Diff 33P
P1-85 J2-2 Flex1034 AF20 Routed to Expansion as Flex Diff 34N
P1-88 J2-3 Flex1O035 AH24 Routed to Expansion as Flex Diff 33N
P1-87 J2-4 Flex1O36 AE20 Routed to Expansion as Flex Diff 34P

144 GX3700 User’s Guide

Expansion Front FPGA pin FPGA Pin Remark

Board Panel User Description Name

Connector Connector

P1-90 J2-5 FlexlO37 AG25 Routed to Expansion as Flex Diff 35P
P1-89 J2-6 Flex1O38 AE21 Routed to Expansion as Flex Diff 36P
P1-92 J2-7 Flex1O39 AH25 Routed to Expansion as Flex Diff 35N
P1-91 J2-8 Flex1040 AF21 Routed to Expansion as Flex Diff 36N
P1-94 J2-9 FlexiO41 AH26 Routed to Expansion as Flex Diff 37P
P1-93 J2-10 Flex1042 AD22 Routed to Expansion as Flex Diff 38P
P1-96 J2-11 Flex1043 AG27 Routed to Expansion as Flex Diff 37N
P1-95 J2-12 Flex1044 AE22 Routed to Expansion as Flex Diff 38N
P1-98 J2-13 Flex1045 AH27 Routed to Expansion as Flex Diff 39P
P1-97 J2-14 Flex1046 AG24 Routed to Expansion as Flex Diff 40P
P1-100 J2-15 FlexlO47 AF26 Routed to Expansion as Flex Diff 39N
P1-099 J2-16 Flex1O48 AF23 Routed to Expansion as Flex Diff 40N
P1-102 J2-17 FlexIO49 AE23 Routed to Expansion as Flex Diff 41P
P1-101 J2-18 FlexIO50 AF24 Routed to Expansion as Flex Diff 42N
P1-104 J2-19 FlexlO51 AD24 Routed to Expansion as Flex Diff 41N
P1-103 J2-20 FlexIO52 AE24 Routed to Expansion as Flex Diff 42P
P1-106 J2-21 Flex1O53 AB1

P1-105 J2-22 FlexlO54 B1

P1-108 J2-23 FlexIO55 AB2

P1-107 J2-24 Flex1O56 C1

P1-110 J2-25 FlexIO57 AE4

P1-109 J2-26 FlexIO58 D1

P1-112 J2-27 Flex1059 ADG6

P1-111 J2-28 Flex1060 D2

P1-114 J2-29 FlexIO61 AE7

P1-113 J2-30 FlexI062 El

P1-116 J2-31 Flex1063 AD7

P1-115 J2-32 FlexlO64 E2

P1-A,C J2-34-66,68 | GND Power

P1-B J2-33,67 User 3.3V Power

P1-179 J3-1 Flex1065 AA18

P1-177 J3-2 FlexIO66 Y17

P1-175 J3-3 FlexIO67 AB17

P1-173 J3-4 Flex1068 AC17

P1-171 J3-5 FlexIO69 AB16

P1-169 J3-6 FlexIO70 AC16

P1-167 J3-7 FlexIO71 Y15

GX3700 Expansion Boards 145

Expansion Front FPGA pin FPGA Pin Remark
Board Panel User Description Name
Connector Connector

P1-165 J3-8 FlexlO72 AA15
P1-163 J3-9 FlexIO73 Y14
P1-161 J3-10 FlexlO74 Y13
P1-159 J3-11 FlexlO75 AA13
P1-157 J3-12 FlexIO76 AB13
P1-155 J3-13 FlexIO77 AAl
P1-153 J3-14 FlexlO78 Y2
P1-151 J3-15 FlexIO79 Y1
P1-149 J3-16 FlexIO80 W2
P1-147 J3-17 Flexl081 w1l
P1-145 J3-18 Flex1082 V3
P1-143 J3-19 Flex1083 Vi
P1-141 J3-20 Flex1O84 U3
P1-139 J3-21 Flex1085 T2
P1-137 J3-22 Flex1086 N2
P1-135 J3-23 Flex1O87 L2
P1-133 J3-24 Flex1088 L1
P1-131 J3-25 Flex1089 K2
P1-129 J3-26 Flex1090 K1
P1-127 J3-27 Flexl091 J1
P1-125 J3-28 Flex1092 H2
P1-123 J3-29 Flex1093 H1
P1-121 J3-30 Flex1094 G2
P1-119 J3-31 FlexIO95 G1
P1-117 J3-32 Flex1096 F1
P1-A,C J3-34-66,68 | GND Power
P1-D J3-33,67 User 5V Power
P1-118 J4-1 Flexl097 AC7
P1-120 J4-2 Flex1098 AB7
P1-122 J4-3 FlexIO99 AC8
P1-124 J4-4 Flex10100 ABS8
P1-126 J4-5 Flexl0101 AH9
P1-128 J4-6 Flex10102 AD9
P1-130 J4-7 Flex10103 AC9
P1-132 J4-8 FlexlO104 AB9
P1-134 J4-9 Flex10105 AA9
P1-136 J4-10 Flex10106 Y9

146 GX3700 User’s Guide

Expansion Front FPGA pin FPGA Pin Remark

Board Panel User Description Name

Connector Connector

P1-138 J4-11 Flex10107 AE10

P1-140 J4-12 FlexIO108 AC10

P1-142 J4-13 Flex10109 AA10

P1-144 J4-14 Flex10110 Y10

P1-146 J4-15 FlexlO111 AE11

P1-148 J4-16 FlexlO112 AC11

P1-150 J4-17 FlexlO113 AB11

P1-152 J4-18 FlexlO114 Y11

P1-154 J4-19 FlexIO115 AF12

P1-156 J4-20 FlexlO116 AC12

P1-158 J4-21 FlexlO117 Y18

P1-160 J4-22 FlexlO118 AD19

P1-162 J4-23 FlexlO0119 AC19

P1-164 J4-24 Flex10120 AB19

P1-166 J4-25 FlexlO121 AA19

P1-168 J4-26 FlexlO122 Y19

P1-170 J4-27 FlexlO0123 AC20

P1-172 J4-28 FlexlO124 AB20

P1-174 J4-29 FlexlO125 AG21

P1-176 J4-30 Flex10126 AD21

P1-178 J4-31 FlexlO127 AC21

P1-180 J4-32 FlexlO128 AB21

P1-A,C J4-34-66,68 | GND Power

P1-D J4-33,67 User 5V Power

P1-1,3,57,9 | N/A 2.5V Power

P1- VCC 1/0O of the 1/0 banks of FPGA used

2,4,6,8,10 on expansion board. Selectable on the

GX3700 carrier by jumper as 1.2V, 2.5V

N/A VCC_IO or 3.3V.

P1-193,195, Power

197,199,201 | N/A 1.2v

P1-205,207 | N/A +12V Power

P1-208 N/A -12V Power

P1-194 N/A MClr Input, Master Clear

P1-198 PSpr0 Do Not Use

P1-200 PSprl Do Not Use

P1-202 PSpr2 Do Not Use

P1-204 PSpr3 Do Not Use

GX3700 Expansion Boards 147

Expansion Front FPGA pin FPGA Pin Remark

Board Panel User Description Name

Connector Connector

P1-184 PbIDO Output, Piggy Back ID. Pull up on carrier
P1-186 PbID1 Output, Piggy Back ID. Pull up on carrier
P1-188 PblD2 Output, Piggy Back ID. Pull up on carrier
P1-200 PbID3 Output, Piggy Back ID. Pull up on carrier
P1-189 FSpr0 L22 Output, Spare. Can be used as Function ID
P1-187 FSprl J16 Output, Spare. Can be used as Function ID
P1-185 FSpr2 J15 Output, Spare. Can be used as Function ID
P1-183 FSpr3 J14 Output, Spare. Can be used as Function ID

Table 8-1: Expansion Board P1 Pin Assignments

Notes for Expansion Board P1 connector:

1.
2.
3.

Maximum 1A per pin.
PSpr[3..0] are reserved. Should be connected to ground using 1K-50K resistors.

PbID[3..0] are used to identify the expansion board. Leave pins unconnected for logic ‘1’ or connect to ground
for logic ‘0’. The GX3700 software driver can read these pins to identify the specific expansion board installed.

FSpr[3..0] are spare pins connected to the user FPGA. Should be connected to ground or 3.3V using 1K-50K
resistors if not used in the design. Can also be used as an additional identification field.

MClr is a Master Clear input to the Expansion board. It is active high and is asserted by the controller at power-
up or by a software command at any time.

The Flex 1/0 signals must never be driven more than VCC_IO. If higher voltage logic is used in the Expansion
board design, these signals must be protected.

During the user FPGA configuration phase, the Flex 1/0 pins have a weak pull-up that may cause an un-
intentional condition in the Expansion board. Pull-down resistors should be used where necessary.

148 GX3700 User’s Guide

GX3701 Expansion Board

The GX3700/GX3700e is provided with the GX3701- Flex 1/0O Feed Through Expansion Module. The GX3701
provides connection and isolation between the FPGA 1/O and the 4 connectors located on the module’s front panel
using bus switches. The GX3700 FPGA supports LVTTL, LVDS logic levels and can also be configured for 1.2 /
2.5/3.3 V logic level. Each channel can be configured as an input or output or isolated. Via the user FPGA, each
1/0O can be programmed for a specific logic level and current level. There are no active buffers on this board.

GX3701 Programming

Use the GXFPGA GxFpgaXXX driver functions to program the board. The functions are described in details in
Chapter 9. Some of the functions are also available from the software front panel.

GX3701 Expansion Board Specification

Number of Channels 160 1/O; up to 84 1/0 can be configured as 42 differential 1/0O channels
4 1/0 are single-ended or 2 differential clock inputs

Logic Family LVTTL, LVDS, configurable for 1.2/ 2.5/ 3.3 V logic; 5 V compatible; user
programmable via the FPGA

Output Current +/- 12 mA, sink or source, max. Programmable via the FPGA

Input Leakage Current +/- 10 UA

Power On State Default is disconnected at power on (unprogrammed FPGA) or defined by FPGA
program

Input Protection Overvoltage: -0.5 V to 7.0 V (input)
Short circuit: up to 8 outputs may be shorted at a time

GX3700 Expansion Boards 149

GX3702 Expansion Board

The GX3702 provides the same functionality as the GX3701 except the 1/0 configuration (connectors J1 — J4) is
compatible with National Instruments’ PXI 7811R and PXI 7813R modules’ I/O.

Connections to the GX3700 may be made with 68-pin VHDCI male plug connector. Shielded cables with matching
connectors are available from MTS. The I/O connections for the GX3702 are detailed in the tables below.

J1 - Flex I/O Bank A Connector

Pin# Function Pin# Function Pin# Function Pin# Function

1 GND 18 GND 35 Flex 1/00 52 Flex 1/0 17
2 GND 19 GND 36 Flex 1/0 1 53 Flex 1/0 18
3 GND 20 GND 37 Flex 1/0 2 54 Flex 1/0 19
4 GND 21 GND 38 Flex 1/0 3 55 Flex 1/0 20
5 GND 22 GND 39 Flex 1/0 4 56 Flex 1/0 21
6 GND 23 GND 40 Flex /105 57 Flex 1/0O 22
7 GND 24 GND 41 Flex 1/0 6 58 Flex 1/0 23
8 GND 25 GND 42 Flex 1/0 7 59 Flex 1/0 24
9 GND 26 GND 43 Flex 110 8 60 Flex 1/0 25
10 GND 27 44 Flex 1/0 9 61 Flex 1/0 26
11 GND 28 45 Flex 1/0 10 62 Flex 1/0 27
12 GND 29 Flex 1/0 28 46 Flex 1/0 11 63 Flex 1/0 29
13 GND 30 Flex 1/0 30 47 Flex 11012 64 Flex 1/0 31
14 GND 31 Flex 1/0 32 48 Flex 1/0 13 65 Flex 1/0O 33
15 GND 32 Flex 1/0 34 49 Flex 1/0 14 66 Flex 1/0 35
16 GND 33 Flex 1/0O 36 50 Flex 1/0 15 67 Flex 1/0 37
17 GND 34 Flex 1/0O 38 51 Flex 1/0 16 68 Flex 1/0 39

Table 8-2: J1 Flex 10 Bank A Pin Out

150 GX3700 User’s Guide

J2 — Flex I/0 Bank B Connector

Pin# Function Pin# Function Pin# Function Pin# Function

1 GND 18 GND 35 Flex 1/0 40 52 Flex 1/0 57
2 GND 19 GND 36 Flex 1/0 41 53 Flex 1/0O 58
3 GND 20 GND 37 Flex 1/0 42 54 Flex 1/0 59
4 GND 21 GND 38 Flex 1/0 43 55 Flex 1/0 60
5 GND 22 GND 39 Flex 1/0 44 56 Flex 1/0 61
6 GND 23 GND 40 Flex 1/0O 45 57 Flex 1/0 62
7 GND 24 GND 41 Flex 1/0O 46 58 Flex 1/0 63
8 GND 25 GND 42 Flex 1/0 47 59 Flex 1/0 64
9 GND 26 GND 43 Flex 1/0O 48 60 Flex 1/0O 65
10 GND 27 44 Flex 1/0 49 61 Flex 1/0O 66
11 GND 28 45 Flex 1/0 50 62 Flex 1/0 67
12 GND 29 Flex 1/0 68 46 Flex 1/0 51 63 Flex 1/0 69
13 GND 30 Flex 1/0 70 47 Flex 1/0 52 64 Flex 1/0 71
14 GND 31 Flex 1/0 72 48 Flex 1/0 53 65 Flex 1/0 73
15 GND 32 Flex 1/0 74 49 Flex 1/0 54 66 Flex 1/0 75
16 GND 33 Flex 1/0 76 50 Flex 1/0 55 67 Flex 1/0 77
17 GND 34 Flex 1/0 78 51 Flex 1/0 56 68 Flex 1/0 79

Table 8-3: J2 Flex 10 Bank B Pin Out
J3 - Flex I/0 Bank C Connector

Pin# Function Pin# Function Pin# Function Pin# Function

1 GND 18 GND 35 Flex 1/0 80 52 Flex 1/0 97
2 GND 19 GND 36 Flex 1/0 81 53 Flex 1/0O 98
3 GND 20 GND 37 Flex 1/0 82 54 Flex 1/0 99
4 GND 21 GND 38 Flex 1/0O 83 55 Flex 1/0 100
5 GND 22 GND 39 Flex 1/0 84 56 Flex 1/0 101
6 GND 23 GND 40 Flex 1/0 85 57 Flex 1/0 102
7 GND 24 GND 41 Flex 1/0O 86 58 Flex 1/0 103
8 GND 25 GND 42 Flex 1/0 87 59 Flex 1/0 104
9 GND 26 GND 43 Flex 1/0O 88 60 Flex 1/0 105
10 GND 27 44 Flex 1/0 89 61 Flex 1/0 106
11 GND 28 45 Flex 1/0 90 62 Flex 1/0 107
12 GND 29 Flex 1/0 108 46 Flex 1/0 91 63 Flex 1/0 109
13 GND 30 Flex 1/0 110 47 Flex 1/0 92 64 Flex 1/0 111
14 GND 31 Flex 1/0 112 48 Flex 1/0 93 65 Flex I/0 113
15 GND 32 Flex 1/0 114 49 Flex 1/0 94 66 Flex 1/0 115
16 GND 33 Flex 1/0 116 50 Flex 1/0 95 67 Flex 1/0 117
17 GND 34 Flex 1/0 118 51 Flex 1/0 96 68 Flex I/0 119

Table 8-4: J3 Flex 10 Bank C Pin Out

GX3700 Expansion Boards 151

J4 — Flex I/0 Bank D Connector

Pin# Function Pin# Function Pin# Function Pin# Function

1 GND 18 GND 35 Flex 1/0 120 52 Flex 1/0 137
2 GND 19 GND 36 Flex 110 121 53 Flex 1/0 138
3 GND 20 GND 37 Flex 110 122 54 Flex 1/0 139
4 GND 21 GND 38 Flex 110 123 55 Flex 1/0 140
5 GND 22 GND 39 Flex 1/0 124 56 Flex 1/0 141
6 GND 23 GND 40 Flex 1/0 125 57 Flex 1/0 142
7 GND 24 GND 41 Flex 1/0 126 58 Flex 1/0 143
8 GND 25 GND 42 Flex 110 127 59 Flex 1/0 144
9 GND 26 GND 43 Flex 1/0 128 60 Flex 1/0O 145
10 GND 27 44 Flex 1/0 129 61 Flex 1/0O 146
11 GND 28 45 Flex 1/0 130 62 Flex 1/0O 147
12 GND 29 Flex 1/0 148 46 Flex 1/0 131 63 Flex 1/0 149
13 GND 30 Flex 1/0 150 47 Flex 1/0 132 64 Flex 1/0 151
14 GND 31 Flex 1/0 152 48 Flex 1/0 133 65 Flex 1/0 153
15 GND 32 Flex 1/0 154 49 Flex 1/0 134 66 Flex 1/0 155
16 GND 33 Flex 1/0 156 50 Flex 1/0 135 67 Flex 1/0 157
17 GND 34 Flex 1/0 158 51 Flex 1/0 136 68 Flex 1/0 159

Table 8-5: J4 Flex 10 Bank D Pin Out
1/0O: Input/ Output, R: Reserved, DNU: Do Not Use, P: Power/GND

GX3702 Expansion Board Specification

Number of Channels 160 1/0; up to 84 1/0 can be configured as 42 differential 1/0 channels
4 1/0 are single-ended or 2 differential clock inputs

Logic Family LVTTL, LVDS, configurable for 1.2/ 2.5/ 3.3 V logic; 5 V compatible,
programmable per pin via the FPGA

Output Current +/- 12 mA, sink or source, max; programmable via the FPGA

Input Leakage Current +/- 10 UA

Power On State Default is disconnected at power on (unprogrammed FPGA) or defined by FPGA
program

Input Protection Overvoltage: -0.5 V to 7.0 V (input)

Short circuit: up to 8 outputs may be shorted at a time

152 GX3700 User’s Guide

GX3788 Expansion Board

The GX3700/GX3700e can be equipped with the GX3788- Digital and Analog I1/O Expansion Module. The
GX3788 is a user configurable, FPGA-based, 3U PXI multi-function card which supports digital and analog test
capabilities. The GX3788 is based on the GX3700 FPGA card and includes an integral daughter board which
provides (8) differential input, 16-bit, 250 MS/s A to D converters and (8), 16-bit, 1 MS/s, D to A converters. The
module's FPGA is pre-programmed, providing access to all digital and analog functions. Alternatively, users can
program or modify the FPGA, allowing user to adapt the module to their own specific test needs. The design of the
FPGA employs Altera’s free Quartus Il Web Edition tool set. Once the user has compiled the FPGA design, the
configuration file can be loaded into the FPGA directly or via an on-board EEPROM. The digital and analog 1/0
lines are routed to the 4 front connections (J1 to J4)

The GX3788’s digital I/O signals are TTL compatible and can be programmed as inputs or outputs. The Ato D
channels can be configured as 8 differential, or 16 single ended inputs and support a sampling rate of up to 250
KS/s. Alternately, two channel operation can support a sampling rate of 1 MS/s. The D to A channels support a
simultaneous sampling rate of 1 MS/s. The FPGA device supports up to four phase lock loops for clock synthesis,
clock generation and for support of the 1/0 interface. An on-board 80 MHz oscillator is available for use with the
FGPA device or alternatively, the PXI 10 MHz clock can be used as a clock reference by the FPGA.

GX3788 Programming

Use the GXFPGA Gx3788xxx driver functions to program the board. The functions are described in detail in
Chapter 9. Some of the functions are also available from the software front panel (DAQ page).

GX3700 Expansion Boards 153

GX3788 Digital and Analog Multi-Function Expansion Board Specification

Digital /0O Channels

Logic Families

LVTTL, LVDS, configurable for 1.2/ 2.5/ 3.3 V logic; 5 V compatible,
programmable per pin via the FPGA

Current

+12.0 mA, max. Programmable per pin via the FPGA

Input Leakage Current

+10 pA

Power on State

Default is disconnected at power on (unprogrammed FPGA) or defined by
FPGA program

Number of Channels

32 Differential digital 1/O lines
64 Single-ended digital 1/0 line

FIFO Depth

2047 Samples

Maximum FIFO Clock Rate

10 MHz

Clock Sources

PXI triggers, Ext Trigger, Star X, PXI CIk10, PXI CIk100 (Express
version), DSTAR (Express version), Local bus

Protection

Overvoltage: -0.5 V to 7.0 V (input)
Short circuit: up to 8 outputs may be shorted at a time

Analog Input Channels

Number of Channels

8 differential or 16 single-ended

Sample Rate

250 KS/s (simultaneous) or
1 MS/s (two channels)

Bus Transfer Modes

DMA, Interrupt, Register I/O

Resolution

16-bits

Accuracy

+/- 13.60V Range: +/- 7.50mV
+/- 10.24V Range: +/- 6.50mV
+/- 5.12V Range: +/- 4.50mV
+/- 2.56V Range: +/- 4.0mV

Input VVoltage Ranges (FS VDC) +13.6*
+10.24
+5.12
+2.56
+1.28
+0.64
* Uses the gain value for the 20.48 VDC range

Input Impedance 500 M ohms

Analog BW (3 dB) 8 MHz

Over Voltage Protection + 24V

CMRR, DC to 60 Hz 90 dB

Channel to Channel Crosstalk

-120 dB (adj. ch.), Fin = 10 KHz

Triggering

Trigger in/ Trigger out (FPGA controlled)

154 GX3700 User’s Guide

Analog Output Channels

Number of Channels 8

Conversion Rate 1 MS/s (simultaneous)
Resolution 16-bits

Output Accuracy +/- 6.0 mV

Output Range 10V

Output Drive Current 3mA

Short Circuit Current 8 mA

Output Slew Rate 6 V/us

Timing Sources

PXI Bus 10 MHz

Internal 80 MHz oscillator, £20 ppm

FPGA and Memory

FPGA Type Altera Stratix I11, EP3SL50F780
Number of PLLs Four

Logic Elements 475K

Internal Memory 1.836 Mb

On-Board Memory 256 K x 32 SSRAM
On-Board Flash 16 MB

Power

3.3VvDC 3.6 A (typ); 4.9 A (max)
5VvDC 0.045 A (max)

User 3.3 V (@ J1, J2 connector) 1 A, max

User 5V (@ J3, J4 connector) 1 A, max
Environmental

Operating Temperature 0°Cto+50°C

Storage Temperature -20°Cto +70 °C

Size 3U PXI

Weight 200 g

Chapter 9 - Function Reference

Introduction

Function Reference 155

The GXFPGA driver functions reference chapter is organized in alphabetical order. Each function is presented

starting with the syntax of the function, a short description of the function parameters description and type followed

by a Comments, an Example (written in C), and a See Also sections.
All function parameters follow the same rules:

e Strings are ASCIIZ (null or zero character terminated).

e Most function’s first parameter is nHandle (16-bit integer). This parameter is required for operating the
board and is returned by the GxFpgalnitialize or the GxFpgalnitializeVisa functions. The nHandle is
used to identify the board when calling a function for programming and controlling the operation of that

board.

e All functions return a status with the last parameter named pnStatus. The pnStatus is zero if the function
was successful, or less than a zero on error. The description of the error is available using the
GxFpgaGetErrorString function or by using a predefined constant, defined in the driver interface files:

GXFPGA.H, GXFPGA.BAS, GXFPGA.VB, GXFPGA.PAS or GXFPGA.DRV.

e Parameter name are prefixed as follows:

Prefix | Type Example
a Array, prefix this before the simple type. anArray (Array of
Short)
Short (signed 16-bit) nMode
d Double - 8 bytes floating point dReading
dw Double word (unsigned 32-bit) dwTimeout
I Long (signed 32-bit) IBits
p Pointer. Usually used to return a value. Prefix this before the simple pnStatus
type.
sz Null (zero value character) terminated string szMsg
w Unsigned short (unsigned 16-bit) wParam
hwnd | Window handle (32-bit integer). hwndPanel

Table 9-1: Parameter Prefixes

156 GX3700 User’s Guide

GXFPGA Functions

The following list is a summary of functions available for the GX3700:

Driver Functions

Description

General Functions

GxFpgalnitialize

Initializes the driver for the board at the specified slot number
using HW. The function returns a handle that can be used with
other GXFPGA functions to program the board

GxFpgalnitializeVisa

Initializes the driver for the specified slot using VISA. The
function returns a handle that can be used with other GXFPGA
functions to program the board.

GxFpgaReset

Resets the GX3700 interface FPGA and User FPGA to their
default state.

GxFpgaGetBoardSummary

Returns the board summary.

GxFpgaGetBoardType

Returns the board type.

GxFpgaGetDriverSummary

Returns the driver name and version.

GxFpgaGetErrorString

Returns the error string associated with the specified error
number.

GxFpgaPanel

Opens the instrument panel dialog to used to interactively control
the board.

FPGA Settings Functions

GxFpgaGetEepromSummary

Returns the timestamp and filename of the last FPGA
configuration written to EEPROM.

GxFpgaGetExpansionBoardID

Returns the current Expansion Board ID.

GxFpgaload Loads the volatile FPGA or the non volatile EEPROM with
FPGA configuration data in the form of SVF or RPD files
respectively.

GxFpgalLoadFromEeprom Loads the FPGA with the contents of the EEPROM.

GxFpgaloadStatus Returns the progress of the last asynchronous load in percentage.

GxFpgaloadStatusMessage

Returns a string describes the current load progress of the last
asynchronous load.

GxFpgaRead

Reads the specified number of data elements from the User’s
FPGA specified BAR memory.

GxFpgaReadRegister

Reads a 32 bit User’s FPGA register.

GxFpgaWrite

Writes the specified number of data elements to the User’s
FPGA specified BAR memory.

GxFpgaWriteRegister

Writes a buffer of 32 bit double words to the User’s FPGA’s
register space.

Event (Interrupt) Functions

GxFpgaSetEvent

Enables or disables an event handler

GxFpgaDiscardEvents

Clears the events queue

GxFpgaWaitOnEvent

Waits until event received or timeout occurred

Function Reference 157

Driver Functions

Description

DMA Functions

GxFpgaDmaFreeMemory

Free the DMA block of continues physical memory that was
previously allocated when the user called GxFpgaDmaTransfer
API

GxFpgaDmaGetTransferStatus

Returns the DMA transfer status register.

GxFpgaDmaTransfer

Transfers a block of data using DMA.

Upgrade firmware functions

GxFpgaUpgradeFirmware

Upgrades the board’s firmware.

GxFpgaUpgradeFirmwareStatus

Monitor the firmware upgrade process.

Gx3788 functions

Gx3788Initialize

Initializes the driver for the board at the specified slot number
using HW. The function returns a handle that can be used with
other GX3788 functions to program the board

Gx3788InitializeVisa

Initializes the driver for the specified slot using VISA. The
function returns a handle that can be used with other GX3788
functions to program the board.

Gx3788Reset

Resets the GX3788 to its default state.

Gx3788Panel

Opens the instrument panel dialog to used to interactively control
the board.

Gx3788AnaloglnGetGroundSource

Returns the analog input ground source

Gx3788AnaloglnMeasureChannel

Measure voltage from analog input channel

Gx3788AnalogInScanGetChannelListIndex

Returns the analog input channel from index

Gx3788AnaloglnScanGetCount

Returns the analog input scan count

Gx3788AnalogInScanGetSampleRate

Returns the analog input scan sample rate

Gx3788AnalogIinScanGetLastRunCount

Returns the analog input scan count of the last run

Gx3788AnalogInScanisRunning

Returns the status of the analog input scanning

Gx3788AnalogInScanReadMemoryRawData

Reads the analog input memory in the form of raw data

Gx3788AnaloginScanReadMemoryVoltages

Reads the analog input memory in the form of voltages

Gx3788AnaloglnScanSetChannelListIndex

Sets the analog input channel at an index

Gx3788AnaloginScanSetCount

Sets the analog input scan count

Gx3788AnalogInScanSetSampleRate

Sets the analog input scan sample rate

Gx3788AnaloglnScanStart

Starts the analog input scan process

Gx3788AnalogInSetGroundSource

Sets the analog input ground source

Gx3788AnalogOutGetOutputState

Returns the analog output state

Gx3788AnalogOutGetVoltage

Returns the analog output voltage value

Gx3788AnalogOutReset

Resets the analog output settings.

Gx3788AnalogOutSetOutputState

Sets the analog output state

Gx3788AnalogOutSetVoltage

Sets the analog output voltage value

Gx3788GetBoardSummary

Returns the board summary.

Gx3788GetCalibrationInfo

Returns the board calibration info

158 GX3700 User’s Guide

Driver Functions

Description

Gx3788PioGetPort

Returns the digital port output data value

Gx3788PioGetPortChannel

Returns the digital channel output data value

Gx3788PioGetPortDirection

Returns the digital port direction state

Gx3788PioGetPortChannelDirection

Returns the digital channel direction state

Gx3788PioReadPort

Reads the input state of 32 channels in the specified digital port

Gx3788PioReadPortChannel

Reads the input state of the specified digital port channel

Gx3788PioResetPort

Resets the digital port to default settings

Gx3788PioResetPortChannel

Resets the digital port channel to default settings

Gx3788PioSetPort

Sets the digital port output data value

Gx3788PioSetPortChannel

Sets the digital channel output data value

Gx3788PioSetPortDirection

Sets the digital port direction state

Gx3788PioSetPortChannelDirection

Sets the digital channel direction state

Gx3788TriggerGetOutputLevel

Returns trigger output level

Gx3788TriggerReadlnputLevel

Reads back the trigger input level

Gx3788TriggerSetOutputLevel

Sets the trigger output level

Function Reference 159

GxFpgaDiscardEvents

Purpose

Clears the event queue.

Syntax

GxFpgaDiscardEvents (nHandle, nEventType, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

nEventType SHORT Event type. Use the constant GT_EVENT_INTERRUPT (1). No other value is
supported.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The function clears the event queue and remove all pending events. Setting an event handler using the
GxFpgaSetEvent automatically clears the event queue.

Example
The following example uses discard events to reset the queue after lengthy operation:

GxFpgalnitialize (1, &nHandle, &nStatus);
GxFpgaSetEvent (nHandle, GT_EVENT INTERRUPT, TRUE, NULL, (PVOID)1, &nStatus);
while (TRUE)
{
! wait up to 1000 ms for the event
GxFpgaWaitOnEvent (nHandle, GT_EVENT INTERRUPT, 1000, &nStatus);

if (nStatus!=0) ! success event occurred

{ printf (“no event occurred - exiting”);
break;

}

else

{ ! do something lengthy ..
! now ready to receive more events
GxFpgaDiscardEvents (nHandle, GT EVENT INTERRUPT, &nStatus);

See Also
GxFpgalnitialize, GxFpgaGetErrorString, GxFpgaWaitOnEvent, GxFpgaSetEvent

160 GX3700 User’s Guide

GxFpgaDmaFreeMemory

Purpose

Free the DMA block of continues physical memory that was previously allocated when the user called
GxFpgaDmaTransfer API.

Syntax

GxFpgaDmaFreeMemory (nHandle, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Comments

The first time the use calls the GxFpgaDmaTransfer API, a 64KB block of continues physical memory is allocated
for the DMA usage. The user can free this block of physical memory back to the OS by calling this function.
Example

The following example free any previously allocated block of 64KB of continues physical memory.

SHORT nStatus;

GxFpgaDmaFreeMemory (nHandle, &nStatus);

See Also

GxFpgaDmaTransfer, GxFpgaGetErrorString

GxFpgaDmaGetTransferStatus

Function Reference 161

Purpose

Returns the DMA transfer status register.

Syntax

GxFpgaDmaGetTransferStatus (nHandle, pnDmaStatus, pnStatus)
Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pnDmaStatus SHORT 0. No DMA Transfer
1. DMA Transfer is in progress.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example
The following example returns the DMA transfer status:

SHORT nDmaStatus;
GxFpgaDmaGetTransferStatus (nHandle, &nDmaStatus, &nStatus);

See Also
GxFpgaDmaTransfer, GxFpgaGetErrorString

162 GX3700 User’s Guide

GxFpgaDmaTransfer
Purpose
Transfers a block of data using DMA.
Syntax
GxFpgaDmaTransfer (nHandle, bDmaRd, pvData, nElementSize, dwSize, dwMode, pvOp, pnStatus)
Parameters
Name Type Comments
nHandle SHORT Handle for a GX3700 board.
bDmaRd BOOL Transfer operation:
0. GXFPGA_DMA _READ = DMA write opearation. The function will write the
buffer data (pvData) content to the User’s FLEX FPGA memory location.
1. GXFPGA_DMA_WRITE = DMA read opearation. The function will copy the
speciread from the User’s FLEX FPGA memory location to the buffer (pvData).
pvData PVOID Pointer to an array of data. The array must be greater or equal to dwSize parameter.
nElementSize SHORT The pvData buffer element size.
dwsSize DWORD Number of elements in the pvData buffer. Maximum number of bytes that can be
transferred at once is 65528.
dwMode DWORD Not used.
pvOp PVOID Not used.
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Comments

The function utilizes the built-in DMA capabilities in order to transfer data to or from the User’s FLEX FPGA at the
fastest speed.

Note: The user need to setup the path to the target memory as it design depended.

Example
The following example read a block of 256 bytes of data from User’s FLEX FPGA memory location to the buffer:

DWORD adwData[256]
GxFpgaDmaTransfer (nHandle, GXFPGA DMA READ, 0, &adwData, 4, 256, 0, 0, &nStatus);

See Also
GxFpgaDmaGetTransferStatus, GxFpgaGetErrorString

Function Reference 163

GxFpgaGetBoardSummary

GxFpgaGetBoardSummary (nHandle, pszSummary, nMaxLen, pnStatus)

Comments

Purpose

Returns the board information.
Syntax

Parameters

Name Type
nHandle SHORT

pszSummary PSTR

Handle for a GX3700 board.
Buffer to contain the returned board info (null terminated) string.

nMaxLen SHORT pszSummary buffer size.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The function returns the board information including the board firmware version, serial number and user FPGA part
number.

The Gx3700 board comes installed with one of the following the following Stratix 111 user FPGA parts:

EP3SL50F780
EP3SL70F780
EP3SL110F780
EP3SL150F780
EP3SL200F780
EP3SL340F780
EP3SE50F780
EP3SE80F780
EP3SE110F780
EP3SLE260F780.

Example
The following example returns the board information:

CHAR szSummary[1024];

GxFpgaGetBoardSummary

See Also
GxFpgalnitialize, GxFpgaGetEepromSummary, GxFpgaGetErrorString

(nHandle, szSummary, 1024, &nStatus);

164 GX3700 User’s Guide

GxFpgaGetBoardType
Purpose
Returns the board type.
Syntax
GxFpgaGetBoardType (nHandle, pnType, pnStatus)
Parameters
Name Type Comments
nHandle SHORT Handle for a GX3700 board.
pnType PSHORT Returned board type:
0. GXFPGA_UNKNOWN_BOARD_TYPE: unknown board type
1. GXFPGA_BOARD_TYPE_GX3500: board type is GX3500
2. GXFPGA_BOARD_TYPE_GX3500E: board type is GX3500E
3. GXFPGA_BOARD_TYPE_GX3700: board type is GX3700
4. GXFPGA_BOARD_TYPE_GX3700E: board type is GX3700E
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example returns the board type:

SHORT nType;

GxFpgaGetBoardType (nHandle, &nType, &nStatus);

See Also

GxFpgalnitialize, GxFpgaGetEepromSummary, GxFpgaGetErrorString

Function Reference 165

GxFpgaGetEepromSummary

Purpose

Retur;ns the timestamp and filename of the last FPGA configuration written to EEPROM.

Syntax

GxFpgaGetEepromSummary (nHandle, pszZSummary, nMaxLen, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pszSummary PSTR Buffer to contain a summary indicating last FPGA EEPROM write timestamp and file
name.

nMaxLen SHORT pszSummary buffer size.

pnStatus PSHORT Returned status: 0 on success, negative humber on failure.

Comments

The function returns the time stamp and file name indicating the last recorded EEPROM loading.

Example
The following example returns the EEPROM summary:

CHAR szSummary[1024];
GxFpgaGetEepromSummary (nHandle, szSummary, 1024, &nStatus);

See Also
GxFpgaload, GxFpgaGetBoardSummary, GxFpgaGetErrorString

166 GX3700 User’s Guide

GxFpgaGetDriverSummary

Purpose

Returns the driver name and version.
Syntax
GxFpgaGetDriverSummary (pszSummary, nSummaryMaxLen, pdwVersion, pnStatus)

Parameters

Name Type Comments

pszSummary PSTR Buffer to the returned driver summary string.

nSummaryMaxLen SHORT The size of the summary string buffer.

pdw\Version PDWORD Returned version number. The high order word specifies the major version
number where the low order word specifies the minor version number.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The returned string is: "GXFPGA Driver for GX3700. Version 1.00, Copyright © 2009 Marvin Test Solutions —
MTS inc.".

Example

The following example prints the driver version:

CHAR sz [128];
DWORD dwVersion;
SHORT nStatus;

GxFpgaGetDriverSummary (sz, sizeof sz, &dwVersion, &nStatus);

printf ("Driver Version %d.%d", (INT) (dwVersion>>16), (INT)
dwVersion &OxXFFFF) ;

See Also
GxFpgaGetBoardSummary, GxFpgaGetErrorString

Function Reference 167

GxFpgaGetErrorString

Purpose

Returns the error string associated with the specified error number.
Syntax

GxFpgaGetErrorString (nError , pszMsg, nErrorMaxLen, pnStatus)
Parameters

Name Type Comments

nError SHORT Error number.

pszMsg PSTR Buffer to the returned error string.
nErrorMaxLen SHORT The size of the error string buffer.
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Comments

The function returns the error string associated with the nError as returned from other driver functions.
The following table displays the possible error values; not all errors apply to this board type:

Resource Errors

0 No error has occurred

-1 Unable to open the HW driver. Check if HW is properly installed

-2 Board does not exist in this slot/base address

-3 Different board exist in the specified PCI slot/base address

-4 PCI slot not configured properly. You may configure using the PciExplorer from the Windows Control
Panel

-5 Unable to register the PCI device

-6 Unable to allocate system resource for the device

-7 Unable to allocate memory

-8 Unable to create panel

-9 Unable to create Windows timer

-10 Bad or Wrong board EEPROM

-11 Not in calibration mode

-12 Board is not calibrated

-13 Function is not supported by the specified board

General Parameter Errors

-20 Invalid or unknown error number
-21 Invalid parameter

-22 Illegal slot number

-23 Illegal board handle

-24 Illegal string length

-25 Illegal operation mode

168 GX3700 User’s Guide

-26 Parameter is out of the allowed range
VISA Errors
-30 Unable to Load VISA32/64.DLL, make sure VISA library is installed
-31 Unable to open default VISA resource manager, make sure VISA is properly installed

-32 Unable to open the specified VISA resource
-33 VISA viGetAttribute error

-34 VISA vilnXX error

-35 VISA ViMapAddress error

Miscellaneous Errors

-41 Unable to enable interrupt or event
-42 Unable to disable interrupt or event
-43 Event or interrupt timeout

-44 Event or interrupt wait error

Board Specific Errors
-50 Offset is out of range
-51 File Name is not valid
-52 Programming file could not be opened
-53 User FPGA Volatile Programming error
-54 User FPGA EEPROM Programming error
-55 Cannot program through software, External Programmer Detected
-56 FPGA or EEPROM is currently being loaded and is busy
-57 FPGA could not be reloaded with the EEPROM data
-58 Size and Offset must be multiple of 4
-59 Expansion board required for function not found
-60 FPGA device program failure
-61 Mismatch the data width and number of bytes
-62 Offset must be multiple of 4
-63 Invalid data width, can be 1 byte, 2 bytes or 4 bytes
-64 Invalid DMA data size
-65 Invalid DMA board's offset
-66 Error: timeout when reading using DMA.
-67 Error: timeout when writing using DMA
-70 Invalid time stamp in on-board EEPROM
-71 Error: timeout when reading from the on-board EEPROM
=72 Error: timeout when writing to the on-board EEPROM

Example

Function Reference 169

The following example initializes the board. If the initialization failed, the following error string is printed:

CHAR sz [256];
SHORT nStatus, nHandle;
GxFpgalnitialize (3, &Handle, &Status);
if (nStatus<0)
{
GxFpgaGetErrorString (nStatus, sz, sizeof sz, &nStatus);

printf(sz); // prints the error string returns

170 GX3700 User’s Guide

GxFpgaGetExpansionBoardID

Purpose

Returns the current Expansion Board ID.

Syntax

GxFpgaGetExpansionBoardID (nHandle, pucExpansionBoardID, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pucExpansionBoardID PBYTE Returned value that identifies the currently installed expansion board.
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Comments

The returned expansion board ID identifies the type of expansion board being used:

ucExpansionBoardID Type of board Examples

Ox1 PIO expansion board GX3701, GX3709, GX3710
OxF No expansion board installed N/A

Comments

The expansion board ID is read from P8 pins 19, 21, 23 and 25 to from a 4 bit integer (0-15).
Example
The following example returns the expansion board 1D to the ucExpansionBoardID:

BYTE ucExpansionBoardID;
GxFpgaGetExpansionBoardID (nHandle, &ucExpansionBoardID, &nStatus);

See Also
GxFpgaGetErrorString

Function Reference 171

GxFpgalnitialize

Purpose

Initializes the driver for the board at the specified slot number. The function returns a handle that can be used with
other GXFPGA functions to program the board.

Syntax

GxFpgalnitialize (nSlot, pnHandle, pnStatus)

Parameters

Name Type Comments

nSlot SHORT GX3700 board slot number on the PXI bus.

pnHandle PSHORT Returned handle for the board. The handle is set to zero on error and <> 0 on
success.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The GxFpgalnitialize function verifies whether or not the GX3700 board exists in the specified PXI slot. The
function does not change any of the board settings. The function uses the HW driver to access and program the
board.

The Marvin Test Solutions HW device driver is installed with the driver and is the default device driver. The
function returns a handle that for use with other Counter functions to program the board. The function does not
change any of the board settings.

The specified PXI slot number is displayed by the PXI/PCI Explorer applet that can be opened from the Windows
Control Panel. You may also use the label on the chassis below the PXI slot where the board is installed. The
function accepts two types of slot numbers:

e A combination of chassis number (chassis # x 256) with the chassis slot number. For example 0x105 (chassis 1
slot 5).

e Legacy nSlot as used by earlier versions of HW/VISA. The slot number contains no chassis number and can be
changed using the PXI/PCI Explorer applet (1-255).

The returned handle pnHandle is used to identify the specified board with other GX3700 functions.

Example
The following example initializes two GX3700 boards at slot 1 and 2.

SHORT nHandlel, nHandle2, nStatus;
GxFpgalInitilize (1, &nHandlel, &nStatus);
GxFpgalnitilize (2, &nHandle2, &nStatus);
if (nHandlel==0 || nHandle2==0)
{

printf (“Unable to Initialize the board”)
return;
}
See Also

GxFpgalnitializeVisa, GxFpgaReset, GxFpgaGetErrorString

172 GX3700 User’s Guide

GxFpgalnitializeVisa

Purpose

Initializes the driver for the specified PXI slot using the default VISA provider.

Syntax

GxFpgalnitializeVisa (szVisaResource, pnHandle, pnStatus)

Parameters

Name Type Comments

szVisaResource LPCTSTR String identifying the location of the specified board in order to establish a
session.

pnHandle PSHORT Returned Handle (session identifier) that can be used to call any other operations
of that resource

pnStatus PSHORT Returned status: 0 on success, 1 on failure.

Comments

The GxFpgalnitializeVisa opens a VISA session to the specified resource. The function uses the default VISA
provider configured in your system to access the board. You must ensure that the default VISA provider support
PXI/PCI devices and that the board is visible in the VISA resource manager before calling this function.

The first argument szVisaResource is a string that is displayed by the VISA resource manager such as NI
Measurement and Automation (NI_MAX). It is also displayed by Marvin Test Solutions PXI/PCI Explorer as shown
in the prior figure. The VISA resource string can be specified in several ways as follows:

o Using chassis, slot, for example: “PXI0::CHASSIS1::SLOTS5”
e Using the PCI Bus/Device combination, for example: “PXI19::13::INSTR” (bus 9, device 9).
e Using alias, for example: “FPGA1”. Use the PXI/PCI Explorer to set the device alias.

The function returns a board handle (session identifier) that can be used to call any other operations of that resource.
The session is opened with VI_TMO_IMMEDIATE and VI_NO_LOCK VISA attributes. On terminating the
application the driver automatically invokes viClose() terminating the session.

Example
The following example initializes a GX3700 boards at PXI bus 5 and device 11.
SHORT nHandle, nStatus;
GxFpgalInitializeVisa (“PXI5::11::INSTR”, &nHandle, &nStatus);
if (nHandle==0)
{
printf ("Unable to Initialize the board")
return;
}
See Also

GxFpgalnitialize, GxFpgaReset, GxFpgaGetErrorString

Function Reference 173

GxFpgalLoad

Purpose

Loads the volatile FPGA or the non-volatile EEPROM with FPGA configuration data in the form of SVF or RPD
files respectively.

Syntax

GxFpgalLoad (nHandle, nTarget, szFileName nMode, pnStatus)
Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.
nTarget SHORT Target can be as follows:

0. GXFPGA _LOAD_TARGET_VOLATILE
1. GXFPGA LOAD_TARGET EEPROM

szFileName LPCSTR Path and file name of the file containing the FPGA configuration data. If the
programming mode is Volatile, then the file will have a .SVF extension. If the
programming mode is EEPROM, then the file will have an .RPD extension.

nMode SHORT The loading mode can be as follows:
0. GXFPGA_LOAD_MODE_SYNC
1. GXFPGA_LOAD_MODE_ASYNC
pnStatus PSHORT Returned status: 0 on success, negative humber on failure.

Comments

This function can operate in synchronous mode or asynchronous mode. Synchronous mode means that the function
is blocking and does not return until after the load operation has completed. The Asynchronous mode means that the
function is non-blocking and returns immediately and allows the calling program to check the load status by calling
GxFpgalLoadStatus.

Use the GxFpgalLoadFromEeprom function to load the volatile memory from the EEPROM. By default, when the
card is powered up the volatile memory will be automatically load the configuration from the EEPROM.

Example

The following example loads the volatile FPGA with a Serial Vector File (SVF) in synchronous mode

GxFpgaload (nHandle, GXFPGA_LOAD_TARGET_ VOLATILE, “C:\\MyDesign.SVF”, GXFPGA_LOAD_MODE_SYNC
&nStatus) ;

See Also

GxFpgaloadStatus, GxFpgalLoadStatusMessage, GxFpgaGetEepromSummary, GxFpgal.oadFromEeprom,
GxFpgaGetErrorString

174 GX3700 User’s Guide

GxFpgaLoadFromEeprom

Purpose

Loads the FPGA with the contents of the EEPROM.
Syntax

GxFpgalLoadFromEeprom (nHandle, pnStatus)
Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.
pnStatus ~ PSHORT Returned status: 0 on success, negative number on failure.

Comments

By default, when JP2 jumper is present, when the card is powered up the volatile memory will be automatically
loaded with the configuration from the EEPROM.

Example
The following example loads the FPGA with the contents of the EEPROM:

GxFpgalLoadFromEeprom (nHandle, &nStatus);

See Also
GxFpgaload, GxFpgaGetErrorString

Function Reference 175

GxFpgalLoadStatus

Purpose

Returns the progress of the last asynchronous load in percentage.

Syntax

GxFpgalLoadStatus (nHandle, pnPercentCompleted, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.
pnPercentCompleted PSHORT The percent complete of the current load, 0-100.
pnStatus PSHORT Returned status: 0 on success, negative humber on failure.
Comments

100 percent indicates that the load has completed. This function is used to check the load status after calling
GxFpgaLoad in Asynchronous mode.

Example
The following load an FPGA file in asynchronous mode and prints the progress:

SHORT nPercentage=0, nPriorPrecentage, nStatus, n;
CHAR szMsg[l1024];

GxFpgaLoad (nHandle, GXFPGA LOAD TARGET VOLATILE, “C:\\MyDesign.SVF”, GXFPGA LOAD MODE ASYNC
&nStatus) ;

while (nStatus==0 && nPrecentage<100)

{ GxFpgaLoadStauts (nHandle, &nPercentage, &nStatus);
GxFpgaloadStautsMessage (nHandle, szMsg, sizeof szMsg, &n);
if (nPrecentage!=nPriorPrecentage)

printf (“Load Complete=%i, Status=%s”, nPrecentage, szMsqg);
nPriorPrecentage=nPrecentage;
sleep(300);
}

printf (“Load Complete=%i, Status=%s”, nPrecentage, szMsqg);

See Also
GxFpgalLoad, GxFpgal oadStatusMessage, GxFpgaGetErrorString

176 GX3700 User’s Guide

GxFpgalLoadStatusMessage

Purpose

Returns a string describes the current load progress of the last asynchronous load.

Syntax

GxFpgalLoadStatusMessage (nHandle, pszMsg, nMsgMaxLen, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pszMsg PSTR A buffer to the returned message describing the current load status.
nMsgMaxLen SHORT Size of the pszMsg.

pnStatus PSHORT Returned status: 0 on success, hegative number on failure.
Comments

The function returns the current load status into the user-supplied buffer. You can use the function to display the
status progress and result after calling GxFpgaload in Asynchronous mode.

Example
The following load an FPGA file in asynchronous mode and prints the progress:

SHORT nPercentage=0, nPriorPrecentage, nStatus, n;
CHAR szMsg[1024];

GxFpgaLoad (nHandle, GXFPGA_ LOAD TARGET_VOLATILE, “C:\\MyDesign.SVF”, GXFPGA_ LOAD_MODE_ASYNC
&nStatus) ;

while (nStatus==0 && nPrecentage<100)

{ GxFpgaLoadStauts (nHandle, &nPercentage, &nStatus);
GxFpgaloadStautsMessage (nHandle, szMsg, sizeof szMsg, &n);
if (nPrecentage!=nPriorPrecentage)

printf (“Load Complete=%i, Status=%s”, nPrecentage, szMsqg);
nPriorPrecentage=nPrecentage;
sleep(300);
}

printf (“Load Complete=%i, Status=%s”, nPrecentage, szMsg);

See Also
GxFpgaload, GxFpgalLoadStatus, GxFpgaGetErrorString

Function Reference 177

GxFpgaPanel

Purpose

Opens a virtual panel used to interactively control the GX3700.

Syntax

GxFpgaPanel (pnHandle, hwndParent, nMode, phwndPanel, pnStatus)

Parameters

Name Type Comments

pnHandle PSHORT Handle to a GX3700 board.

hwndParent HWND Panel parent window handle. A value of 0 sets the desktop as the parent window.
nMode SHORT The mode in which the panel main window is created. 0 for modeless window and 1

for modal window.
phwndPanel HWND Returned window handle for the panel.
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Comments
The function is used to create the panel window. The panel window may be open as a modal or a modeless window
depending on the nMode parameters.

If the mode is set to modal dialog (nMode=1), the panel will disable the parent window (hwndParent) and the
function will return only after the window was closed by the user. In that case, the pnHandle may return the handle
created by the user using the panel Initialize dialog. This handle may be used when calling other GXFPGA
functions.

If a modeless dialog was created (nMode=0), the function returns immediately after creating the panel window
returning the window handle to the panel - phwndPanel. It is the responsibility of calling program to dispatch
windows messages to this window so that the window can respond to messages.

Example
The following example opens the panel in modal mode:

DWORD dwPanel;
SHORT nHandle=0, nStatus;

GxFpgaPanel (&nHandle, 0, 1, &dwPanel, &nStatus);

See Also
GxFpgalnitialize, GxFpgaGetErrorString

178 GX3700 User’s Guide

GxFpgaRead
Purpose
Reads the specified number of data elements from the User’s FPGA specified BAR memory.
Syntax
GxFpgaRead (nHandle, nMemoryBar, dwOffset, pvData, nElementSize, dwSize, pnStatus)
Parameters
Name Type Comments
nHandle SHORT Handle for a GX3700 board.
nMemoryBar SHORT The board’s specified memory mapped address space BAR number, values are as
follows:
1. GXFPGA _MEMORY_BAR1: Memory mapped address space BAR 1.
2. GXFPGA_MEMORY_BAR2: Memory mapped address space BAR 2.
3. GXFPGA_MEMORY_BAR3: Memory mapped address space BAR 3.
4. GXFPGA_MEMORY_BAR4: Memory mapped address space BAR 4.
dwOffset DWORD The offset in the FPGA’s shared memory space in terms of bytes, must be aligned to 4
bytes address.
pvData PVOID A buffer that will be written to the FPGA’s shared memory. Buffer size must be as

indicated by the dwSize.
nElementSize SHORT The data Size in bytes.

dwSize DWORD The number of data elements to be read from the memory location.
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example read 100 DWORD data points from BAR2 memory space at offset 8:

DWORD adwData[100];
GxFpgaRead (nHandle, GXFPGA MEMORY BARZ2, 0x8, &adwbData, 4, 100, &nStatus);
See Also

GxFpgaWrite, GxFpgaWriteRegister, GxFpgaGetErrorString

Function Reference 179

GxFpgaReadRegister

Purpose

Reads a 32-bit FPGA register.

Syntax

GxFpgaReadRegister (nHandle, dwOffset, pvData, dwSize, pnStatus)
Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.
dwOffset DWORD The offset in the FPGA’s register space in terms of bytes, must be aligned to 4 bytes

address.
pvData PVOID A buffer that will contain the data read. Buffer size must be as indicated by the dwSize.
dwSize DWORD The number of bytes to be read from the memory location must be multiple of 4.
pnStatus PSHORT Returned status: 0 on success, negative humber on failure.

Comments

This function will read one or more double words from the FPGA’s registers. The offset to be read from must be 4
byte aligned.

The Maximum value of dwOffset is 0x400.

Example

DWORD adwData[100];

GxFpgaReadRegister (nHandle, 0x8, &adwData, 400, &nStatus);
See Also

GxFpgaWriteRegister, GxFpgaGetErrorString

180 GX3700 User’s Guide

GxFpgaReset

Purpose

Resets the GX3700 interface FPGA and User FPGA to their default state.

Syntax

GxFpgaReset (nHandle, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example initializes and resets the GX3700 board:

GxFpgalnitialize (1, &nHandle, &nStatus);
GxFpgaReset (nHandle, &nStatus);

See Also
GxFpgalnitialize, GxFpgaGetErrorString

Function Reference 181

GxFpgaSetEvent

Purpose

Enables or disables an event handler.

Syntax

GxFpgaSetEvent (nHandle, nEventType, bEnable, procCallback, pvUserData, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

nEventType SHORT Event type. Use the constant GT_EVENT_INTERRUPT (1). No other value
is supported.

bEnable BOOL Enable (<>0) or disable (0) the event.

procCallback PROCEDURE Optional. User supplied procedure, called by the driver when an event
occurred.

pvUserData PVOID User data (pointer or value) that is passed to the callback procedure when an
event occurred.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

If NULL is passed in to the procCallback parameter, the only way to get notified that an event has occurred is to call
the GxFpgaWaitOnEvent function.

The procCallback should be defined as follows:
GxFpgaCallback (nHandle, nEventType,,pvUserData, pnStatus) : Long

Example
The following example output whether an event received during 1 second:

GxFpgalInitialize (1, &nHandle, &nStatus);
GxFpgaSetEvent (nHandle, GT_EVENT INTERRUPT, TRUE, NULL, (PVOID)1, &nStatus);
! wait up to 1000 ms for the event
GxFpgaWaitOnEvent (nHandle, GT_EVENT INTERRUPT, 1000, &nStatus);
if (nStatus==0) ! success event occurred
printf (“event occurred”);
else
printf (“No event occurred”);
GxFpgaSetEvent (nHandle, GT EVENT INTERRUPT, FALSE, NULL, (PVOID)1l, &nStatus);

See Also
GxFpgalnitialize, GxFpgaGetErrorString, GxFpgaWaitOnEvent, GxFpgaDiscardEvents

182 GX3700 User’s Guide

GxFpgaUpgradeFirmware

Purpose

Upgrades the board’s firmware.

Syntax

GxFpgaUpgradeFirmware (nHandle, szFile, nMode, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

szFile PCSTR Path and file name of the firmware file. The firmware file extension is RPD.
nMode SHORT The upgrading firmware mode can be as follows:

0. GT_FIRMWARE_UPGRADE_MODE_SYNC: the function returns when upgrading
firmware is done or in case of an error.

1. GT_FIRMWARE_UPGRADE_MODE_ASYNC: the function returns immediately.
The user can monitor the progress of upgrading firmware using the
GxFpgaUpgradeFirmwareStatus API.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

This function used in order to upgrade the board’s firmware. The firmware file can only be obtained by request from
Marvin Test Solutions.

|Note: Loading an incorrect firmware file to the board can permanently damage the board|.

Example
The following example loads Upgrades the board’s firmware using synchronous mode:

GxFpgaUpgradeFirmware (nHandle, “C:\\Gx3700Fw.rpd”, GT LOAD MODE SYNC, &nStatus);

See Also
GxFpgaUpgradeFirmwareStatus, GxFpgaGetErrorString

Function Reference 183

GxFpgaUpgradeFirmwareStatus

Purpose

Monitor the firmware upgrade process.

Syntax

GxFpgaUpgradeFirmwareStatus (nHandle, pszMsg, nMsgMaxLen, pnProgress, pblsDone, pnStatus)
Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

pszMsg PSTR Buffer to contain the message from the firmware upgrade process.

nMsgMaxLen SHORT pszMsg buffer size.
pnProgress PSHORT Returns the firmware upgrades progress.

pblsDone PBOOL Returned TRUE if the firmware upgrades are done.
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Comments

This function is used in order to monitor the firmware upgrade process whenever the user called
GxFpgaUpgradeFirmware APl with GT_ FIRMWARE_UPGRADE_MODE_ASYNC mode.

Note: In order to prevent CPU over load if the function is called form within a loop, a delay of about 500mSec will
be activated if the time differences between consecutive calls are less than 500mSec.

Example

The following example loads Upgrades the board’s firmware using asynchronous mode, and ten monitors the
firmware upgrade process:

CHAR sz[256];
CHAR szMsg[256];
BOOL bIsDone=FALSE;
GxFpgaUpgradeFirmware (nHandle, “C:\\Gx3700Fw.rpd”, GT UPGRADE FIRMWARE MODE ASYNC, &nStatus);
if (nStatus<0)
{ GxFpgaGetErrorString (nStatus, sz, sizeof sz, &nStatus);
printf(sz); // prints the error string returns
}
While (bIsDone==FALSE || nStatus<0)
{ GxFpgaUpgradeFirmwareStatus (nHandle, szMsg, sizeof szMsg, &nProgress, &bIsDone, &nStatus);
printf (“Upgrade Progress %i”, nProgress);
sleep(1000);
}
if (nStatus<0)
{ GxFpgaGetErrorString (nStatus, sz, sizeof sz, &nStatus);
printf(sz); // prints the error string returns
}
See Also

GxFpgaUpgradeFirmware, GxFpgaGetErrorString

184 GX3700 User’s Guide

GxFpgaWaitOnEvent

Purpose

Waits until event received or timeout occurred.

Syntax

GxFpgaWaitOnEvent (nHandle, nEventType, ITimeout, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

nEventType SHORT Event type. Use the constant GT_EVENT_INTERRUPT (1). No other value
is supported.

ITimeout LONG Timeout to wait in mill seconds.

pnStatus PSHORT Returned status: 0 on success (event occurred), negative number on failure.

Comments

The function suspends the current thread until an event occurred or until the specified timeout expired.

Example
The following example output whether an event received during 1 second:

GxFpgalnitialize (1, &nHandle, &nStatus);
GxFpgaSetEvent (nHandle, GT EVENT INTERRUPT, TRUE, NULL, (PVOID)1, &nStatus);
! wait up to 1000 ms for the event
GxFpgaWaitOnEvent (nHandle, GT_EVENT INTERRUPT, 1000, &nStatus);
if (nStatus==0) ! success event occurred
printf (“event occurred”);
else if (nStatus==GT_EVENT WAIT TIMEOUT)
printf ("No event occurred (timeout)”);
else
printf (“Event error”);

GxFpgaSetEvent (nHandle, GT EVENT INTERRUPT, FALSE, NULL, (PVOID)1l, &nStatus);
See Also
GxFpgalnitialize, GxFpgaGetErrorString, GxFpgaSetEvent, GxFpgaDiscardEvents

Function Reference 185

GxFpgaWrite

Purpose
Writes the specified number of data elements to the User’s FPGA specified BAR memory.
Syntax
GxFpgaWrite (nHandle, nMemoryBar, dwOffset, pvData, nElementSize, dwSize, pnStatus)
Parameters
Name Type Comments
nHandle SHORT Handle for a GX3700 board.
nMemoryBar SHORT The board’s specified memory mapped address space BAR number, values are as
follows:
1. GXFPGA _MEMORY_BAR1: Memory mapped address space BAR 1.
2. GXFPGA_MEMORY_BAR2: Memory mapped address space BAR 2.
3. GXFPGA_MEMORY_BAR3: Memory mapped address space BAR 3.
4. GXFPGA_MEMORY_BAR4: Memory mapped address space BAR 4.
dwOffset DWORD The offset of User’s FPGA memory space in bytes.
pvData PVOID A buffer that will be written to the FPGA’s shared memory. Buffer size must be as

indicated by the dwSize.
nElementSize SHORT The data Size in bytes.

dwSize DWORD The number of data elements to write to the memory location.
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example writes 100 DWORD to the User’s FPGA BAR1 memory to begin at offset 8:

DWORD adwData[100];

GxFpgaWrite (nHandle, GXFPGA MEMORY BAR1l, 0x8, &adwData, 4, 100, &nStatus);
See Also

GxFpgaRead, GxFpgaWriteRegister, GxFpgaGetErrorString

186 GX3700 User’s Guide

GxFpgaWriteRegister

Purpose

Writes a buffer of 32 bit double words to the FPGA’s register space.

Syntax

GxFpgaWriteRegister (nHandle, dwOffset, pvData, dwSize, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3700 board.

dwOffset DWORD The offset in the FPGA’s register space in terms of bytes, must be aligned to 4 bytes
address.

pvData PDWORD A buffer that will be written to the FPGA’s registers. Buffer size must be as indicated
by the dwSize.

dwSize DWORD The number of bytes to be written to the registers must be multiple of 4.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

This function will write one or more double words to the FPGA’s registers. The offset to be written to must be 4-
byte aligned

The Maximum value of dwOffset is 0x400.

Example
The following example writes 400 bytes to the card register space at offset 8:

DWORD adwData[100];
GxFpgaWriteRegister (nHandle, 0x8, &adwbata, 400, &nStatus);

See Also
GxFpgaReadRegister, GxFpgaGetErrorString

Function Reference 187

Gx3788Initialize

Purpose

Initializes the driver for the board at the specified slot number. The function returns a handle that can be used with
other GX3788 function.

Syntax

Gx3788Initialize (nSlot, pnHandle, pnStatus)

Parameters

Name Type Comments

nSlot SHORT GX3788 board slot number on the PXI bus.

pnHandle PSHORT Returned handle for the board. The handle is set to zero on error and <> 0 on
success.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The Gx3788lnitialize function verifies whether or not the GX3788 board exists in the specified PXI slot. The
function does not change any of the board settings. The function uses the HW driver to access and program the
board.

The Marvin Test Solutions HW device driver is installed with the driver and is the default device driver. The
function returns a handle that for use with other Counter functions to program the board. The function does not
change any of the board settings.

The specified PXI slot number is displayed by the PXI/PCI Explorer applet that can be opened from the Windows
Control Panel. You may also use the label on the chassis below the PXI slot where the board is installed. The
function accepts two types of slot numbers:

e A combination of chassis number (chassis # x 256) with the chassis slot number. For example, 0x105 (chassis 1
slot 5).

e Legacy nSlot as used by earlier versions of HW/VISA. The slot number contains no chassis number and can be
changed using the PXI/PCI Explorer applet (1-255).

The returned handle pnHandle is used to identify the specified board with other GX3788 functions.

Example
The following example initializes two GX3788 boards at slot 1 and 2.

SHORT nHandlel, nHandle2, nStatus;
Gx3788Initilize (1, &nHandlel, &nStatus);
Gx3788Initilize (2, &nHandle2, &nStatus);
if (nHandlel==0 || nHandle2==0)
{

printf (“Unable to Initialize the board”)
return;
}
See Also

Gx3788InitializeVisa, Gx3788Reset, GxFpgaGetErrorString

188 GX3700 User’s Guide

Gx3788InitializeVisa

Purpose

Initializes the driver for the specified PXI slot using the default VISA provider.

Syntax

Gx3788lInitializeVisa (szVisaResource, pnHandle, pnStatus)

Parameters

Name Type Comments

szVisaResource LPCTSTR String identifying the location of the specified board in order to establish a
session.

pnHandle PSHORT Returned Handle (session identifier) that can be used to call any other operations
of that resource

pnStatus PSHORT Returned status: 0 on success, 1 on failure.

Comments

The Gx3788InitializeVisa opens a VISA session to the specified resource. The function uses the default VISA
provider configured in your system to access the board. You must ensure that the default VISA provider support
PXI/PCI devices and that the board is visible in the VISA resource manager before calling this function.

The first argument szVisaResource is a string that is displayed by the VISA resource manager such as NI
Measurement and Automation (NI_MAX). It is also displayed by Marvin Test Solutions PXI/PCI Explorer as shown
in the prior figure. The VISA resource string can be specified in several ways as follows:

o Using chassis, slot, for example: “PXI0::CHASSIS1::SLOTS5”
e Using the PCI Bus/Device combination, for example: “PX19::13::INSTR” (bus 9, device 9).
e Using alias, for example: “FPGA1”. Use the PXI/PCI Explorer to set the device alias.

The function returns a board handle (session identifier) that can be used to call any other operations of that resource.
The session is opened with VI_TMO_IMMEDIATE and VI_NO_LOCK VISA attributes. On terminating the
application the driver automatically invokes viClose() terminating the session.

Example
The following example initializes a GX3788 boards at PXI bus 5 and device 11.
SHORT nHandle, nStatus;
Gx3788InitializeVisa (“PXI5::11::INSTR”, &nHandle, &nStatus);
if (nHandle==0)
{
printf ("Unable to Initialize the board")
return;
}
See Also

Gx3788lInitialize, Gx3788Reset, GxFpgaGetErrorString

Function Reference 189

Gx3788Reset

Purpose

Resets the GX3788 to their default state.

Syntax

Gx3788Reset (nHandle, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Comments

This function will reset the following settings:

o Digital Port Data to 0x0

o Digital Port Direction to 0x0 (input)

e Analoug Output Channel Voltages to 0.0 V

Example
The following example initializes and resets the GX3788 board:

Gx3788Initialize (1, &nHandle, &nStatus);
Gx3788Reset (nHandle, &nStatus);

See Also
Gx3788Initialize, GxFpgaGetErrorString

190 GX3700 User’s Guide

Gx3788GetBoardSummary

Purpose

Returns the board information.

Syntax

Gx3788GetBoardSummary (nHandle, pszSummary, nMaxLen, pnStatus)
Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pszSummary PSTR Buffer to contain the returned board info (null terminated) string.
nMaxLen SHORT pszSummary buffer size.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Comments

The function returns the board information of the Gx3788 which includes the FPGA version, and serial number.

Example
The following example returns the board information:

CHAR szSummary[1024];
Gx3788GetBoardSummary (nHandle, szSummary, 1024, &nStatus);

See Also
Gx3788lInitialize, GxFpgaGetErrorString, Gx3788GetCalibrationinfo

Function Reference 191

Gx3788GetCalibrationinfo

Purpose

Returns the calibration information.

Syntax

Gx3788GetCalibrationInfo (nHandle, pszCalibrationinfo, ninfoMaxLen, pnDaysUntilExpire, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle to a GX3788 board

pszCalibrationinfo PSTR Buffer to contain the returned board’s calibration information (null terminated)
string.

ninfoMaxLen SHORT Size of the buffer to contain the calibration information string.

pnDaysUntilExpire PSHORT Returns the number of days until or from expiration, if number is > 0 then
calibration is current otherwise past due.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments
The returned board’s calibration information has the following fields:

Model: model number, e.g. “GX3788”

Serial Number: serial number, e.g. 37880016

Control Number: Marvin Test Solutions control number, e.g. “BB-BA-00”
Production Calibration Date: Wed Oct 24 12:30:25 2010

Calibration Date: Wed Oct 24 12:31:58 2010

Recommended Interval: 1 year

Next Calibration Date: Fri Oct 24 12:31:58 2011

Status: calibration status can be either “Expired” followed by the number of days past expiration or “Current”
followed by number of days until expire.

Calibration License: can be either “Installed” with the calibration license number or “Not Installed”.

Example
The following example returns the calibration information:
CHAR szInfo[2048];

SHORT nDays, nStatus;
Gx3788GetCalibrationInfo (nHandle, sz, 2048, &nDays, &nStatus);

See Also
Gx3788Initialize, GxFpgaGetErrorString, Gx3788GetBoardSummary

192 GX3700 User’s Guide

Gx3788AnalogIinGetGroundSource

Purpose

Returns the analog input ground source

Syntax

Gx3788AnaloglnGetGroundSource (nHandle, nChannels, pnGroundSource, pnStatus)
Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nChannels SHORT Select analog in channel group to query:

0. GX3788_ANALOG_IN_CHANNELS_0_7: Channel group0to7

1. GX3788_ANALOG_IN_CHANNELS_8_15: Channel group 8 ot 15
pnGroundSource PSHORT Returns the analog input Ground Source:

0. GX3788 ANALOG_IN_DIGITAL_GND: Digital Ground

1. GX3788_ANALOG_IN_ANALOG_GND: Analog Ground

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example
The following example gets the ground source of analog channels 0 through 7:

Gx3788AnalogInGetGroundSource (nHandle, GX3788 ANALOG IN CHANNELS O 7, &nGroundSource, &nStatus);
See Also
Gx3788AnalogIinSetGroundSource, GxFpgaGetErrorString

Function Reference 193

Gx3788AnaloginMeasureChannel

Measures the voltage on a particular analog channel

Gx3788AnaloglnMeasureChannel (nHandle, nMode, nChannel, nVoltageRange, pdVoltage, pnStatus)

Purpose

Syntax

Parameters

Name Type
nHandle SHORT
nMode SHORT
nChannel SHORT

nVoltageRange SHORT

Comments
Handle for a GX3788 board.

Select analog in channel group to query:
0. GX3788_ANALOG_IN_DIFFERENTIAL
1. GX3788 ANALOG_IN_SINGLE_ENDED

Selects the analog input channel to measure

Use the following constants when using single ended mode:
GX3788_ANALOG_IN_0
GX3788_ANALOG_IN_1
GX3788_ANALOG_IN_2
GX3788_ANALOG_IN_3
GX3788_ANALOG_IN_4
GX3788_ANALOG_IN_5
GX3788_ANALOG_IN_6
GX3788_ANALOG_IN_7
GX3788_ANALOG_IN_8
GX3788_ANALOG_IN_9

. GX3788_ANALOG_IN_10

. GX3788_ANALOG_IN_11

. GX3788_ANALOG_IN_12

. GX3788_ANALOG_IN_13

. GX3788_ANALOG_IN_14

15. GX3788_ANALOG_IN_15

Use the following constants when using differential mode:

GX3788_ANALOG_IN_DIFF_0_AND 1

GX3788_ANALOG_IN_DIFF_2_AND_3

GX3788_ANALOG_IN_DIFF_4_AND_5

GX3788_ANALOG_IN_DIFF_6_AND_7

GX3788_ANALOG_IN_DIFF_8 AND 9

GX3788_ANALOG_IN_DIFF_10_AND_11

GX3788_ANALOG_IN_DIFF_12_AND_13

GX3788_ANALOG_IN_DIFF_14 AND_15

Returns the analog input Ground Source:
GX3788_ANALOG_IN_RANGE_NEG_13p60V_TO_POS_13p60V
GX3788_ANALOG_IN_RANGE_NEG_10p24V_TO_POS_10p24V
GX3788_ANALOG_IN_RANGE_NEG_5p12V_TO_POS_5p12Vv
GX3788_ANALOG_IN_RANGE_NEG_2p56V_TO_POS_2p56V
GX3788_ANALOG_IN_RANGE_NEG_1p28V_TO_POS_1p28V

©o N OrE DR O

e e e =
A W NP O

No A~ EO

PP O

194 GX3700 User’s Guide

5. GX3788_ANALOG_IN_RANGE_NEG_0p64V_TO_POS_0p64V

pdVoltage PDOUBLE Returns the measured voltage
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Comments

Each analog in channel has the ability to be measured for voltage. The detection circuit can be set to use one of 7
voltage ranges (nVVoltageRange parameter). The measurement can also be taken as a single ended input or a
differential pair of inputs (nMode parameter). When the differential mode is used, a pair of analog input channels
are used together to provide the differential input. The differential pairs are defined as channels 0 and 1, channels 2
and 3, etc. For example, if the GX3788_ANALOG_IN_DIFFERENTIAL constant is passed to the nMode and the
GX3788 ANALOG_IN_DIFF_4 AND_5 contant is passed in to the nChannel parameter, the differential pair will
be channels 4 and 5.

Example
The following example gets the ground source of analog channels 0 through 7:

Gx3788AnalogInMeasureChannel (nHandle, GX3788 ANALOG IN SINGLE ENDED, O,
GX3788 ANALOG IN RANGE NEG 10p24V_TO_POS 10p24V, &dVoltage, &nStatus);

printf ("Analog In Channel 0 measurement = %f Voltage", dvVoltage);
See Also
Gx3788lnitialize, Gx3788Reset, GxFpgaGetErrorString

Function Reference 195

Gx3788AnalogIinScanGetChannelListindex

Purpose
Return scan channel list entry

Syntax

Gx3788AnaloglnScanGetChannelListindex (nHandle, dwScanChannelindex, pdwChannel, pnRange, pnMode,
pblsLastChannel, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

dwScanChannellndex DWORD Index of entry in channel list to return (0-63)

pdwChannel PDWORD Returns the channel number stored at the selected index in the scan channel
list (0-15)

pnRange PSHORT Returns the range of the input channel stored at the selected index in the scan
channel list
0. GX3788_ANALOG_IN_RANGE_NEG_13p60V_TO_POS_13p60V
1. GX3788_ANALOG_IN_RANGE_NEG_10p24V_TO POS_10p24V
2. GX3788_ANALOG_IN_RANGE_NEG_5p12V_TO _POS 5p12V
3. GX3788_ANALOG_IN_RANGE_NEG_2p56V_TO_POS_2p56V
4. GX3788_ANALOG_IN_RANGE_NEG_1p28V_TO_POS_1p28V
5. GX3788_ANALOG_IN_RANGE_NEG_0p64V_TO_POS_0p64V

pnMode PSHORT Returns the mode of the input channel stored at the selected index in the scan
channel list
0. GX3788_ANALOG_IN_DIFFERENTIAL
1. GX3788_ANALOG_IN_SINGLE_ENDED

pblsLastChannel PBOOL Returns the last channel flag stored at the selected index in the scan channel
list

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The analog in scan operation requires that a channel list be set up prior to initiating the operation. This function
allows the user to create a channel list, including the analog in channel number, voltage range, and mode. The
channel list is then used by the sequencer to acquire samples (one per channel that is defined in the channel list) for
each sample clock period. Note that the same channel number can be repeated in a channel list, resulting in mulitple
samples being taken on the same channel within a sample clock period. Use the blsLastChannel parameter to
indicate which channel list index should be considered by the sequencer to be the last.

Example
The following example gets the analog in scan channel list at index 4:
Gx3788AnalogInScanSetChannellistIndex (nHandle, 4, &nRange, &nMode, &bIsLastChannel, &nStatus);

See Also

Gx3788AnaloglnScanSetChannelListIndex, Gx3788AnaloginScanSetCount, Gx3788AnaloglnScanGetCount ,
GxFpgaGetErrorString

196 GX3700 User’s Guide

Gx3788AnaloginScanGetCount

Purpose

Returns the analog input measurement count

Syntax

Gx3788AnaloglnScanGetCount (nHandle, pdwMeasureCount, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pdwMeasureCount PDWORD Returns the number of voltage measurements to take during a scan operation
pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The scan count is the number of sample clock periods that will be executed. During each clock period, the sequencer
will capture samples for each channel defined in the channel list. The channel list can be modified by calling
Gx3788AnaloglnScanSetChannelListIndex

Example

The following example gets the analog in scan count;

Gx3788AnalogInScanGetCount (nHandle, &dwMeasurementCount, &nStatus);

See Also

Gx3788AnaloglnScanSetCount, GxFpgaGetErrorString

Function Reference 197

Gx3788AnaloginScanGetLastRunCount

Purpose

Returns the analog input measurement count from the last scan operation

Syntax

Gx3788AnaloglnScanGetLastRunCount (nHandle, pdwMeasureCount, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pdwMeasureCount PDWORD Return_s the number of voltage measurements taken during the last scan
operation

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example gets the analog in scan count of the last scan operation:
Gx3788AnalogInScanGetLastRunCount (nHandle, &dwMeasurementCount, &nStatus);

See Also

Gx3788AnalogInScanSetCount, Gx3788AnaloginScanGetCount, GxFpgaGetErrorString

198 GX3700 User’s Guide

Gx3788AnaloginScanGetSampleRate

Purpose

Returns the analog input measurement sample rate

Syntax

Gx3788AnaloglnScanGetSampleRate (nHandle, pdSampleRate, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pdSampleRate PDOUBLE Returns the sample rate of the analog in scan operation in Hz
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example gets the analog in scan rate:
Gx3788AnalogInScanGetSampleRate (nHandle, &dSampleRate, &nStatus);
See Also

Gx3788AnaloglnScanSetSampleRate, GxFpgaGetErrorString

Function Reference 199

Gx3788AnaloginScanisRunning

Purpose

Returns the analog input measurement sample rate

Syntax

Gx3788AnaloglnScanisRunning (nHandle, pbIsRunning, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pblsRunning PBOOL Return TRUE if an analog in scan operation is in progress and FALSE if it is
not

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example checks if a scan operation is in progress:

Gx3788AnalogInScanIsRunning (nHandle, &bRunning, &nStatus);
if (bRunning)

printf ("Analog In Scan in progress...");
else

printf ("Analog In Scan not running");

See Also
Gx3788AnaloginScanStart, GxFpgaGetErrorString

200 GX3700 User's Guide

Gx3788AnaloginScanReadMemoryRawData

Purpose

Read recorded voltage samples from the last scan operation

Syntax

Gx3788AnaloglnScanReadMemoryRawData (nHandle, dwMemoryStart, dwCount, pawData, pnStatus)
Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

dwMemoryStart DWORD The starting offset in memory for the scan sample memory read operation
dwCount DWORD The number of samples to read from memory

pawData PWORD Return the samples in the form of raw samples within an array
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Comments

The sample memory contains the captured voltage samples after a scan operation has completed. This function
returns the samples in their raw 16-bit form. Each set of sample(s) (acquired from one or more channels as defined
in the channel list), are stored sequentially in memory. For example, if the channel list defines channels 6, 8, 3, and
4, and the sample count was set to 3, then the sample memory will contain voltage samples in the following order:

6,8,3,4...6,8,3,4...6,8,3,4.

Example

The following example reads 10 samples from memory start at offset O:

WORD awData[10];

Gx3788AnalogInScanReadMemoryRawData (nHandle, 0, 10, awData, &nStatus);
See Also

Gx3788AnaloglnScanSetChannelListindex, Gx3788AnaloglnScanSetCount, Gx3788AnaloglnScanStart
GxFpgaGetErrorString

Function Reference 201

Gx3788AnaloginScanReadMemoryVoltages

Purpose

Read recorded voltage samples from the last scan operation

Syntax

Gx3788AnaloglnScanReadMemoryVoltages (nHandle, dwMemoryStart, dwCount, padData, pnStatus)
Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

dwMemoryStart DWORD The starting offset in memory for the scan sample memory read operation
dwCount DWORD The number of samples to read from memory

padData PDOUBLE Return the samples in the form of voltages within an array
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Comments

The sample memory contains the captured voltage samples after a scan operation has completed. This function
returns the samples in the form of voltages. Each set of sample(s) (acquired from one or more channels as defined in
the channel list), are stored sequentially in memory. For example, if the channel list defines channels 6, 8, 3, and 4,
and the sample count was set to 3, then the sample memory will contain voltage samples in the following order:

6,8,3,4...6,8,3,4...6,8,3,4.

Example
The following example reads 10 samples from memory start at offset 0:

DOUBLE adData([10];
Gx3788AnalogInScanReadMemoryVoltages (nHandle, 0, 10, adData, &nStatus);
See Also

Gx3788AnaloglnScanSetChannelListIndex, Gx3788AnaloginScanSetCount, Gx3788AnaloglnScanStart
GxFpgaGetErrorString

202 GX3700 User's Guide

Gx3788AnalogIinScanSetChannelListindex

Purpose
Modify scan channel list

Syntax

Gx3788AnalogInScanSetChannelListindex (nHandle, dwScanChannelindex, dwChannel, nRange, nMode,
bisLastChannel, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

dwScanChannellndex DWORD Index in channel list to modify (0-63)

dwChannel DWORD Channel number to add to the scan channel list (0-15)

nRange SHORT Sets the range of the input channel at the selected index in the scan channel
list
0. GX3788_ANALOG_IN_RANGE_NEG_13p60V_TO_POS_13p60V
1. GX3788_ANALOG_IN_RANGE_NEG_10p24V_TO_POS_10p24V
2. GX3788_ANALOG_IN_RANGE_NEG_5p12V_TO_POS 5p12V
3. GX3788_ANALOG_IN_RANGE_NEG_2p56V_TO_POS_2p56V
4. GX3788_ANALOG_IN_RANGE_NEG_1p28V_TO_POS_1p28V
5. GX3788_ANALOG_IN_RANGE_NEG_0p64V_TO_POS_0p64V

nMode SHORT Sets the mode of the input channel at the selected index in the scan channel
list
0. GX3788_ANALOG_IN_DIFFERENTIAL
1. GX3788_ANALOG_IN_SINGLE_ENDED

blsLastChannel BOOL Marks the channel as the last in the channel list at the selected channel index

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The analog in scan operation requires that a channel list be set up prior to initiating the operation. This function
allows the user to create a channel list, including the analog in channel number, voltage range, and mode. The
channel list is then used by the sequencer to acquire samples (one per channel that is defined in the channel list) for
each sample clock period. Note that the same channel number can be repeated in a channel list, resulting in mulitple
samples being taken on the same channel within a sample clock period. Use the blsLastChannel parameter to
indicate which channel list index should be considered by the sequencer to be the last.

Example
The following example sets the analog in scan channel list at index 4 to analog in channel 5 with a range of +/-
13.60V, and single ended mode:

Gx3788AnalogInScanSetChannellistIndex (nHandle, 4,
GX3788 ANALOG_IN RANGE NEG 13p60V_TO POS 13p60V, GX3788 ANALOG IN SINGLE ENDED, FALSE,
&nStatus) ;

See Also
Gx3788AnalogInScanGetChannelListindex, Gx3788AnaloginScanSetCount, GxFpgaGetErrorString

Function Reference 203

Gx3788AnalogIinScanSetCount

Purpose

Sets the analog input measurement count

Syntax

Gx3788AnaloglnScanSetCount (nHandle, dwMeasureCount, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

dwMeasureCount DWORD Sets the number of voltage measurements to take during a scan operation
pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

The scan count is the number of sample clock periods that will be executed. During each clock period, the sequencer
will capture samples for each channel defined in the channel list. The channel list can be modified by calling
Gx3788AnaloglnScanSetChannelListIndex

Example

The following example sets the analog in scan count to 5:

Gx3788AnalogInScanSetCount (nHandle, 5, &nStatus);

See Also

Gx3788AnaloglnScanGetCount, GxFpgaGetErrorString

204 GX3700 User's Guide

Gx3788AnaloginScanSetSampleRate

Purpose

Sets the analog input measurement sample rate

Syntax

Gx3788AnaloglnScanSetSampleRate (nHandle, dSampleRate, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

dSampleRate DOUBLE Sets the sample rate of the analog in scan operation in Hz
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example sets the analog in scan rate to 100 Hz:
Gx3788AnalogInScanSetSamppleRate (nHandle, 100, &nStatus);
See Also

Gx3788AnalogInScanGetSampleRate, GxFpgaGetErrorString

Function Reference 205

Gx3788AnaloginScanStart

Purpose

Starts an analog in scan operation

Syntax

Gx3788AnaloglnScanStart (nHandle, nScanMode, dwMemoryStart, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nScanMode SHORT Sets the scan operation mode:
0. GX3788_ANALOG_IN_DIFFERENTIAL: Diffrential mode
1. GX3788 _ANALOG_IN_SINGLE_ENDED: Single ended mode

dwMemoryStart DWORD Sets the address in sample memory to start from

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example starts an analog in scan operation using single ended mode, starting at memory address 0:
Gx3788AnalogInScanStart (nHandle, GX3788 ANALOG IN SINGLE ENDED, 0, &nStatus);

See Also

Gx3788AnaloglnScanSetSampleRate, Gx3788AnaloginScanGetSampleRate, GxFpgaGetErrorString

206 GX3700 User's Guide

Gx3788AnalogIinSetGroundSource

Purpose
Sets the analog input ground source
Syntax
Gx3788AnaloglnSetGroundSource (nHandle, nChannels, nGroundSource, pnStatus)
Parameters
Name Type Comments
nHandle SHORT Handle for a GX3788 board.
nChannels SHORT Select analog in channel group to query:
0. GX3788_ANALOG_IN_CHANNELS_0_7: Channel group 0 to 7
1. GX3788_ANALOG_IN_CHANNELS 8 15: Channel group 8 ot 15
nGroundSource | SHORT Analog input Ground Source:
0. GX3788_ANALOG_IN_DIGITAL_GND: Digital Ground
1. GX3788_ANALOG_IN_ANALOG_GND: Analog Ground
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example sets the ground source of analog channels 0 through 7 to digital ground:

Gx3788AnalogInSetGroundSource (nHandle, GX3788 ANALOG IN CHANNELS 0 7,
GX3788_ANALOG_IN DIGITAL GND, &nStatus);

See Also

Gx3788AnalogInGetGroundSource, GxFpgaGetErrorString

Function Reference 207

Gx3788AnalogOutGetOutputState

Purpose
Returns the analog output channel state
Syntax
Gx3788AnalogOutGetOutputState (nHandle, pbOutputEnable, pnStatus)
Parameters
Name Type Comments
nHandle SHORT Handle for a GX3788 board.
pbOutputEnable PBOOL Returns the analog output state.
0. GX3788 ANALOG_OUT_ENABLE: All the analog ouput channels are
enabled (driving voltage).
1. GX3788_ANALOG_OUT_DISABLE: All the analog output channels are
disabled (not driving voltage).
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example gets the analog output channel state:
Gx3788AnalogOutGetOutputState (nHandle, &bAnalogOutputState, &nStatus);
See Also

Gx3788AnalogOutSetOutputState, Gx3788AnalogOutSetVoltage, Gx3788AnalogOutGetVoltage,
GxFpgaGetErrorString

208 GX3700 User's Guide

Gx3788AnalogOutGetVoltage

Purpose

Returns the analog output channel voltage

Syntax

Gx3788AnalogOutGetVoltage (nHandle, nChannel, pdVoltage, pnStatus)
Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nChannel SHORT Selects analog output channel to set (0-7)
pdVoltage PDOUBLE Returned voltage setting of the selected channel
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example gets the analog output channel 4 voltage:
Gx3788AnalogOutGetVoltage (nHandle, 4, &dVoltage, &nStatus);
See Also

Gx3788AnalogOutSetVoltage, GxFpgaGetErrorString

Function Reference 209

Gx3788AnalogOutReset

Purpose

Sets all the analog output channels to default settings

Syntax

Gx3788AnalogOutReset (nHandle, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Comments

This function sets all analog output channels to 0 volts and disables all analog output channels.

Example

The following example resets analog output channels:

Gx3788AnalogOutReset (nHandle, &nStatus);

See Also

Gx3788AnalogOutSetVoltage, Gx3788AnalogOutGetVoltage, GxFpgaGetErrorString

210 GX3700 User's Guide

Gx3788AnalogOutSetOutputState

Purpose
Sets the analog output channel state
Syntax
Gx3788AnalogOutSetOutputState (nHandle, bOutputEnable, pnStatus)
Parameters
Name Type Comments
nHandle SHORT Handle for a GX3788 board.
bOutputEnable BOOL Sets the analog output state.
0. GX3788 ANALOG_OUT_ENABLE: All the analog ouput channels are
enabled (driving voltage).
1. GX3788_ANALOG_OUT_DISABLE: All the analog output channels are
disabled (not driving voltage).
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example enables all the analog output channels:
Gx3788AnalogOutSetOutputState (nHandle, GX3788 ANALOG OUT ENABLE, &nStatus);
See Also

Gx3788AnalogOutGetOutputState, Gx3788AnalogOutSetVoltage, Gx3788AnalogOutGetVoltage,
GxFpgaGetErrorString

Gx3788AnalogOutSetVoltage

Function Reference 211

Purpose

Sets the analog output channel voltage

Syntax

Gx3788AnalogOutSetVoltage (nHandle, nChannel, dVoltage, pnStatus)
Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nChannel SHORT Selects analog output channel to set (0-7)
dVoltage DOUBLE Voltage to set the analog output channel
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example sets the analog output channel 4 to 6.5 volts:
Gx3788AnalogOutSetVoltage (nHandle, 4, 6.5, &nStatus);
See Also

Gx3788AnalogOutGetVoltage, GxFpgaGetErrorString

212 GX3700 User's Guide

Gx3788PioGetPort

Purpose

Returns the output states of a selected digital port

Syntax

Gx3788PioGetPort (nHandle, nPort, pdwValue, pnStatus)
Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.
nPort SHORT Select the digital port to get:

0. GX3788_PIO_PORTO: Digital Port 0
1. GX3788_PIO_PORTL: Digital Port 1
2. GX3788_PIO_PORT?2: Digital Port 2

pdwValue PDWORD Returns the output states of the selected digital port, each bit corresponds to a
channel, when the channel is in high state - 1 will be returned for that channel/bit,
low state — 0 will returned

pnStatus PSHORT Returned status: 0 on success, negative humber on failure.
Example

The following example gets the digital port 0 output states:

Gx3788PioGetPort (nHandle, GX3788 PIO PORTO0, &dwValue, &nStatus);

See Also

Gx3788PioSetPort, GxFpgaGetErrorString

Function Reference 213

Gx3788PioGetPortChannel

Purpose
Returns the output state of a selected digital port
Syntax
Gx3788PioGetPortChannel (nHandle, nPort, nChannel, pbValue, pnStatus)
Parameters
Name Type Comments
nHandle SHORT Handle for a GX3788 board.
nPort SHORT Select the digital port to get:
0. GX3788_PIO_PORTO: Digital Port 0
1. GX3788_PIO_PORT1: Digital Port 1
2. GX3788_PIO_PORT?2: Digital Port 2
nChannel SHORT Selects the channel within the selected port to query (0-31)
pbValue PBOOL Returns the output state of the selected digital channel
0. FALSE: Digital low level
1. TRUE: Digital high level
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example gets the digital port 0, channel 15 output state:

Gx3788PioGetPortChannel (nHandle, GX3788 PIO PORTO, 15, &pbValue, &nStatus);

See Also

Gx3788PioSetPortChannel, Gx3788PioGetPortChannel, Gx3788PioSetPort, GxFpgaGetErrorString

214 GX3700 User's Guide

Gx3788PioGetPortChannelDirection

Purpose
Returns the digital channel direction state
Syntax
Gx3788PioGetPortChannelDirection (nHandle, nPort, nChannel, pbValue, pnStatus)
Parameters
Name Type Comments
nHandle SHORT Handle for a GX3788 board.
nPort SHORT Select the digital port to get:
0. GX3788_PIO_PORTO: Digital Port 0
1. GX3788_PIO_PORT1: Digital Port 1
2. GX3788_PIO_PORT?2: Digital Port 2
nChannel SHORT Selects the channel within the selected port to set (0-31)
pbValue PBOOL Returns the direction setting of a selected digital channel
0. FALSE: Digital channel is an input
1. TRUE: Digital channel is an output
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example gets the digital port 0, channel 15 direction setting:
Gx3788PioGetPortChannelDirection (nHandle, GX3788 PIO PORTO, 15, &bDirection, &nStatus);
See Also

Gx3788PioSetPortChannelDirection, Gx3788PioSetPortChannel, Gx3788PioGetPortChannel,
Gx3788PioSetPort, Gx3788PioGetPort, GxFpgaGetErrorString

Function Reference 215

Gx3788PioGetPortDirection

Purpose

Returns the direction (input or output) settings of a selected digital port
Syntax

Gx3788PioGetPortDirection (nHandle, nPort, pdwDirection, pnStatus)
Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to get:

0. GX3788_PIO_PORTO: Digital Port 0

1. GX3788_PIO_PORTL: Digital Port 1

2. GX3788_PIO_PORT?2: Digital Port 2
pdwDirection PDWORD Returns the direction settings of the selected digital port

0. GX3788_PIO_PORT_DIRECTION_IN: Digital channel is an input

1. GX3788_PIO_PORT_DIRECTION_OUT: Digital channel is an output
pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example gets the digital port 0 direction settings:
Gx3788PioGetPortDirection (nHandle, GX3788 PIO PORTO, &dwDirection, &nStatus);
See Also

Gx3788PioSetPortDirection, Gx3788PioSetPort, Gx3788PioGetPort, Gx3788PioSetPortChannel,
Gx3788PioGetPortChannel, GxFpgaGetErrorString

216 GX3700 User's Guide

Gx3788PioReadPort

Purpose
Reads the input state of 32 channels in the specified digital port
Syntax
Gx3788PioReadPort (hnHandle, nPort, pdwValue, pnStatus)
Parameters
Name Type Comments
nHandle SHORT Handle for a GX3788 board.
nPort SHORT Select the digital port to read from:
0. GX3788_PIO_PORTO: Digital Port 0
1. GX3788_PIO_PORT1: Digital Port 1
2. GX3788_PIO_PORT?2: Digital Port 2
pdwValue PDWORD Returns the read input states of the selected digital port
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example reads the digital port O input states:
Gx3788PioReadPort (nHandle, GX3788 PIO PORTO, &dwValue, &nStatus);
See Also

Gx3788PioGetPort, Gx3788PioSetPort, GxFpgaGetErrorString

Function Reference 217

Gx3788PioReadPortChannel

Purpose
Reads the input state of the specified digital port channel
Syntax
Gx3788PioReadPortChannel (nHandle, nPort, nChannel, pbValue, pnStatus)
Parameters
Name Type Comments
nHandle SHORT Handle for a GX3788 board.
nPort SHORT Select the digital port to read from:
0. GX3788_PIO_PORTO: Digital Port 0
1. GX3788_PIO_PORT1: Digital Port 1
2. GX3788_PIO_PORT?2: Digital Port 2
nChannel SHORT Selects the channel within the selected port to read from (0-31)
pbValue PBOOL Returns the read input states of the selected digital channel
0. FALSE: Digital low level
1. TRUE: Digital high level
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example reads the digital port 0, channel 15 input state:
Gx3788PioReadPortChannel (nHandle, GX3788 PIO PORTO, 15, &bValue, &nStatus);
See Also

Gx3788PioReadPort, Gx3788PioGetPort, Gx3788PioSetPort, Gx3788PioGetPortChannel,
Gx3788PioSetPortChannel, GxFpgaGetErrorString

218 GX3700 User's Guide

Gx3788PioResetPort

Purpose

Sets the selected digital port to default

Syntax

Gx3788PioResetPort (nHandle, nPort, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to set:
0. GX3788_PIO_PORTO: Digital Port 0
1. GX3788_PIO_PORT1: Digital Port 1
2. GX3788_PIO_PORT?2: Digital Port 2

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Comments

This function sets all channel output values to 0 and all channel directions to input within the selected port.

Example

The following example resets digital port O:

Gx3788PioResetPort (nHandle, GX3788 PIO PORTO, &nStatus);
See Also

Gx3788PioResetPortChannel, Gx3788PioSetPort, Gx3788PioGetPort, Gx3788PioSetPortChannel,
Gx3788PioGetPortChannel, GxFpgaGetErrorString

Gx3788PioResetPortChannel

Function Reference 219

Purpose
Sets the selected digital channel to default
Syntax
Gx3788PioResetPortChannel (nHandle, nPort, nChannel, pnStatus)
Parameters
Name Type Comments
nHandle SHORT Handle for a GX3788 board.
nPort SHORT Select the digital port to reset:
0. GX3788_PIO_PORTO: Digital Port 0
1. GX3788_PIO_PORT1: Digital Port 1
2. GX3788_PIO_PORT?2: Digital Port 2
nChannel SHORT Selects the channel within the selected port to reset (0-31)
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Comments

This function the selected channel output value to 0 and direction to input.

Example

The following example resets digital port 0, channel 15:
Gx3788PioResetPortChannel (nHandle, GX3788 PIO PORTO, 15, &nStatus);
See Also

Gx3788Reset, Gx3788PioSetPortChannel, Gx3788PioGetPortChannel, Gx3788PioSetPort,
Gx3788PioGetPort, GxFpgaGetErrorString

220 GX3700 User's Guide

Gx3788PioSetPort

Purpose

Sets the output states of a selected digital port

Syntax

Gx3788PioSetPort (nHandle, nPort, dwValue, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to set:
0. GX3788_PIO_PORTO: Digital Port 0
1. GX3788_PIO_PORT1: Digital Port 1
2. GX3788_PIO_PORT2: Digital Port 2

dwValue DWORD Sets the output states of the selected digital port, each bit represents a channel
within the port, bit 0, channel 1, when the bit is high the state will be high and 0
for low.

pnStatus PSHORT Returned status: 0 on success, negative humber on failure.

Example

The following example sets the digital port 0 output states to OxF:
Gx3788PioSetPort (nHandle, GX3788 PIO PORTO, OxF, &nStatus);

See Also
Gx3788PioGetPort, Gx3788PioSetPortChannel, Gx3788PioGetPortChannel, GxFpgaGetErrorString

Function Reference 221

Gx3788PioSetPortChannel

Purpose
Sets the output state of a selected digital port
Syntax
Gx3788PioSetPortChannel (nHandle, nPort, nChannel, bValue, pnStatus)
Parameters
Name Type Comments
nHandle SHORT Handle for a GX3788 board.
nPort SHORT Select the digital port to set:
0. GX3788_PIO_PORTO: Digital Port 0
1. GX3788_PIO_PORT1: Digital Port 1
2. GX3788_PIO_PORT?2: Digital Port 2
nChannel SHORT Selects the channel within the selected port to set (0-31)
bValue PBOOL Sets the output state of a selected digital channel
0. FALSE: Digital low level
1. TRUE: Digital high level
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example sets the digital port 0, channel 15, output state to high:
Gx3788PioSetPortChannel (nHandle, GX3788 PIO PORTO, 15, TRUE, &nStatus);

See Also

Gx3788PioGetPortChannel, Gx3788PioSetPort, Gx3788PioGetPort, GxFpgaGetErrorString

222 GX3700 User's Guide

Gx3788PioSetPortChannelDirection

Purpose
Sets the output state of a selected digital port
Syntax
Gx3788PioSetPortChannelDirection (nHandle, nPort, nChannel, bValue, pnStatus)
Parameters
Name Type Comments
nHandle SHORT Handle for a GX3788 board.
nPort SHORT Select the digital port to set:
0. GX3788_PIO_PORTO: Digital Port 0
1. GX3788_PIO_PORT1: Digital Port 1
2. GX3788_PIO_PORT?2: Digital Port 2
nChannel SHORT Selects the channel within the selected port to set (0-31)
bValue BOOL Sets the direction setting of a selected digital channel
0. FALSE: Digital channel is an input
1. TRUE: Digital channel is an output
pnStatus PSHORT Returned status: 0 on success, negative number on failure.
Example

The following example sets the digital port 0, channel 15 direction to output:
Gx3788PioSetPortChannelDirection (nHandle, GX3788 PIO PORTO, 15, TRUE, &nStatus);
See Also

Gx3788PioGetPortChannelDirection, Gx3788PioSetPortChannel, Gx3788PioGetPortChannel,
Gx3788PioSetPort, Gx3788PioGetPort, GxFpgaGetErrorString

Function Reference 223

Gx3788PioSetPortDirection

Purpose

Sets the direction (input or output) settings of a selected digital port
Syntax

Gx3788PioSetPortDirection (nHandle, nPort, dwDirection, pnStatus)
Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nPort SHORT Select the digital port to set:

0. GX3788_PIO_PORTO: Digital Port 0

1. GX3788_PIO_PORT1: Digital Port 1

2. GX3788_PIO_PORT?2: Digital Port 2
dwDirection DWORD Sets the direction settings of the selected digital port

0. GX3788_PIO_PORT_DIRECTION_IN: Digital channel is an input

1. GX3788_PIO_PORT_DIRECTION_OUT: Digital channel is an output
pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example sets channels 0 to 4 of digital port 0 to output and channels 5 to 31 to input:
Gx3788PioSetPortDirection (nHandle, GX3788 PIO PORTO, Ox1F, &nStatus);

See Also

Gx3788PioGetPortDirection, Gx3788PioSetPort, Gx3788PioGetPort, Gx3788PioSetPortChannel,
Gx3788PioGetPortChannel, GxFpgaGetErrorString

224 GX3700 User's Guide

Gx3788TriggerGetOutputLevel

Purpose

Returns the output level of the trigger output line

Syntax

Gx3788TriggerGetOutputLevel (nHandle, pnTriggerLevel, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pnTriggerLevel PSHORT Returns the output trigger level:
0. GX3788 TRIGGER_LEVEL_LOW: Output Trigger level is set to Low
1. GX3788_TRIGGER_LEVEL_HIGH: Output Trigger leve is set to High

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example gets the trigger output level:

Gx3788TriggerSetOuputlLevel (nHandle, &nTriggerLevel, &nStatus);

See Also

Gx3788TriggerSetOutpulevel, Gx3788TriggerReadlnputLevel, GxFpgaGetErrorString

Function Reference 225

Gx3788TriggerReadInputLevel

Purpose

Reads the level of the trigger input line

Syntax

Gx3788TriggerReadlnputLevel (nHandle, pnTriggerLevel, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

pnTriggerLevel PSHORT Returns the input trigger level:
0. GX3788 TRIGGER_LEVEL_LOW: Input Trigger level reads back Low
1. GX3788_TRIGGER_LEVEL_HIGH: Input Trigger level reads back High

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example reads the input trigger level:

Gx3788TriggerReadInputlLevel (nHandle, &nTriggerLevel, &nStatus);

See Also

Gx3788TriggerGetOutpulevel, Gx3788TriggerSetOutpulevel, GxFpgaGetErrorString

226 GX3700 User's Guide

Gx3788TriggerSetOutputLevel

Purpose

Sets the output level of the trigger output line

Syntax

Gx3788TriggerSetOutputLevel (nHandle, nTriggerLevel, pnStatus)

Parameters

Name Type Comments

nHandle SHORT Handle for a GX3788 board.

nTriggerLevel SHORT Sets the output trigger level:
0. GX3788 TRIGGER_LEVEL_LOW: Output Trigger level is set to Low
1. GX3788_TRIGGER_LEVEL_HIGH: Output Trigger leve is set to High

pnStatus PSHORT Returned status: 0 on success, negative number on failure.

Example

The following example sets the trigger output level to high:

Gx3788TriggerSetOuputlLevel (nHandle, GX3788 TRIGGER LEVEL HIGH, &nStatus);

See Also

Gx3788TriggerGetOutpulevel, Gx3788TriggerReadlnputLevel, GxFpgaGetErrorString

Index

NET oo, i
A

AdAer CIFCUIT ...covviveeecee s 61
Adder Circuit with PCI Bus Connection ...62, 94, 120
Adder COMPONENESccerveiiirieerenee e 53
Adder WIzardccooeoviiniiiinecieeses 59, 60
AREIA ..o 3,47,81, 103
APPLICAIONS ..o 4
AFChITECTUNE ... 1
Architecture

ATEASY ..o ii, 25, 43, 44
B

Board DesCription..........ccccouevieeieeneiiie e e 1,5
Board Handle..........cccoovniiiniincccs 46
Board Installationcccovviviiniicinc 27
BOorland ... 43
Borland-Delphi ..o 43
Bus Wiring TOOIcccoviiiiniiiiiicnecces 57
C

CICH ittt 43
Calibrationccoeeveirieiincce s 191
Components Used.........ccccoevvevvevieeiveninennn, 53, 87, 109
CONNECLON ... 30, 35
CoNNECLOrS.......covvviriiiiieicie s 29, 30, 35, 141, 149
Corrupt flleS. .o 24
Creating the FPGA Design 66, 67, 95, 121
Cyclone Hl....oooooviieeiee e 48, 82, 104
D

D FHP FIOPS .c.vvivieeeee e 58, 93, 119
Decoder Propertiesccoeveereerereenenensesienenes 56
[=] o] o[i, 43
(1= o o PSS 55, 89

Index 227

Device SeleCtionccocevvrverincennnenens 48, 82, 104
DIFECLOMIES w..vevvvreeireeiee e 25
Distributing the DFIVer........cccccovevieiiesniceee e 46
DMA FIFO Interface Timingcccceeevvivevveiiennennenn, 12
Driver

DIrECIONY ..o 25

FIIES o 25
Dynamic Digital Sequencer Circuit............c.cccovenee 70
E
Error-Handlingcccooveviininnnncnccscs 46
ESD oo 27
EXAMPIES oo 46
Expansion Board Connector..........ccccceeevvecveivennnnns 142
Expansion Board Design Guide............ccccccvvvennnne 133
EXpansion Boards...........cccccevverviiesineseeseenieenns 133
F
FEALUIES.....cveiiiiiciicie 3
Function Reference..........ccooviiiiiicciinnnn, 155
G
Getting Started........cooovereiire 23
GX3700Schem.tCl.......coovvvvcvveicieirieceeene, 51, 85, 107
GXBT0L o 148, 152
GX3701 Specificationc..cceeevvennnnne. 148, 151, 153
Gx3788AnaloginGetGroundSourcecccue..ee.. 192
Gx3788AnaloginMeasureChannel 193
Gx3788AnaloginScanGetChannelListIndex 195
Gx3788AnalogIinScanGetCount...........ccceevvvvvenen. 196
Gx3788AnaloginScanGetLastRunCount............... 197
Gx3788AnalogIinScanGetSampleRate................... 198
Gx3788AnalogInScanIsRunning.........c.ccoevvenee. 199
Gx3788AnaloginScanReadMemoryRawData....... 200
Gx3788AnaloginScanReadMemoryVoltages........ 201
Gx3788AnaloginScanSetChannelListindex.......... 202
Gx3788AnaloginScanSetCount...........ccoceveeniennene 203

228 GX3700 User's Guide

Gx3788AnaloginScanSetSampleRate 204
Gx3788AnalogInScanStart...........ccocveeveveiieinenenn, 205
Gx3788AnalogInSetGroundSource..........cccccvenee. 206
Gx3788AnalogOutGetOutputState.............ccoveeeee. 207
Gx3788AnalogOutGetVoltagecccveevevreennne. 208
Gx3788AnalogOutReSEt.........cvcvvreiiiiiiciice 209
Gx3788AnalogOutSetOutputState..............ccoveeeee. 210
Gx3788AnalogOutSetVoltage.........cccccvvvivrirnnne. 211
Gx3788GetBoardSummarycoccovvreeviinienne 190
Gx3788GetCalibrationInfo..........c.ccceovvviirciinnnns 191
GX3788INItializeoovevveeiiiiec 187
Gx3788InitializeVisa..........ccooevvvvvriiinicnee 188
GX3788PI0GELPOI.......cceeiciiiece e 212
Gx3788PioGetPortChannelcccccvvvviirinne, 213
Gx3788PioGetPortChannelDirection 214
Gx3788PioGetPortDireCtion..........cccccvvevrereenne 215
Gx3788PIiOReadPOIT.......cviviieiiiiiiiccriee s 216
Gx3788PioReadPortChannelccccvvvvivriennnne, 217
GX3788PIORESEIPOITcvevieeiciiieiceecies 218
Gx3788PioResetPortChannelcccoeevvinenne, 219
GX3788PI0SEtPON ... 220
Gx3788PioSetPortChannelc.ccovovrvvivninne, 221
Gx3788PioSetPortChannelDirection...................... 222
Gx3788Pi0oSetPortDirectioncccccvvevvvrrnnne 223
GX378BRESEL ...t 189
Gx3788TriggerGetOutputLevelccccvvverennen, 224
Gx3788TriggerReadInputLevel...........cccovvriennnne. 225
Gx3788TriggerSetOutputLevelc.cceeveieienee. 226
GXFPGA ...t 1,24

Driver-DesCriptionc.covervienennienienee e 43

Header-file ... 43
GXFPGA DIIVEF ..ot 43
GXFPGA driver funCtions..........ccoceeevveneinenens 45
GXFPGA FUNCLIONS ..o 156
GXFPGA SOTtWAIE......cveviviriiicinieiec e 25
GXFPGA.DAS ..o 43

GXFPGAI.....ocoiiiiiiicec e 44

GXFPGA.EXEcoiiiiiiiiieenesc e 24
GXFPGAN .ottt 43
GXFPGALLD ..ot 43
GXFPGAD ..ot 44
GXFPGALPAS....coiiiieeieeie ettt 43
GXFPGAWD ..ottt 43
GXFPGABADLL ..ot 43
GXFPGABAIID ..o 43
GXFPGABC.IID....ooiiiiieee e 43
GXFpgaDiscardEVENt..........ccoovveveeeseeie e 159
GXFpgaDiscardEVENtS.........ccccevevieeeseeierienieseens 156
GxFpgaDmaFreeMemory.......c.ccocevvvvviiiennnne 157, 160
GxFpgaDmaGetTransferStatus..................... 157, 161
GxFpgaDmaTransfer..........cccooevveivenccinennnn, 157, 162
GxFpgaGetBoardSummary 156, 157, 158, 163
GxFpgaGetBoardType........ccovvvvrenviniennnn, 156, 164
GxFpgaGetDriverSummary...........cc.c..... 46, 156, 166
GxFpgaGetEepromSummarycccceeeenen. 156, 165
GxFpgaGetErrorString 46, 155, 156, 167, 169
GxFpgaGetExpansionBoardID...................... 156, 170
GxFpgalnitialize 16, 26, 45, 46, 155, 156, 171
GxFpgalnitializeVisa..... 16, 26, 45, 46, 155, 156, 172
GXFpgaload........ccccveveeivecienic e 156, 173
GxFpgaLoadFromEeprom..........cccccvevvvevennen. 156, 174
GXFpgaloadStatusccceevevvevieerieerieeiieann, 156, 175
GxFpgaloadStatusMessagecccvevveervennen. 156, 176
GXFpgaPanelccccoevveveieieee e 156, 157, 177
GXFPYAREAd ..o 156
GxFpgaReadRegister........ccovvvviveniiiennnn, 156, 179
GXFPQaRESEL ..o 156, 157, 180
GXFpgaSetEVeNnt ... 156, 181
GxFpgaUpgradeFirmwareccocooeevvennne 157,182
GxFpgaUpgradeFirmwareStatus 157,183
GxFpgaWaitOnEventccocoovvenienienene. 156, 184
GXFPYaWTILe ... 156, 178, 185
GxFpgaWriteRegistercoovvereeicneniee. 156, 186

H
Handleoovveiiiieee e 27,28, 45, 46
HW 24, 25, 29, 43, 46
I
If You Need Help ... i
INStAllationccoeoviiieii e 23,24
Precautions-Static-Electricityc.ccoceviinenne 27
Procedures-All-Boardscccovreiivriennn, 27,29
Installation DireCtoriesc.ccooereierennieneneieneee 25
INEEITACES ..o 23
Inter-FPGA Bus Interface Timingcc.ccoevevvevnennn. 11
INrOUCTION ... 3
J
L 30, 31, 35, 149, 150, 151
TTL I/O Connectorccoovevevrvrennne 149, 150, 151
J2 30, 32, 35, 36
I3 30, 33, 35, 37
A oo 30, 34, 35, 38
JP2 39
TP 39
P4 39
I 39
JUMPETS .ottt 39
L
LADVIEW ..o 44
LabVIEW/Real TIMe.......cccoviriiiiiicincncesenes 44
LINUX oo 44
M
Mechanical Guide.........c.coceovniniiiinie e 138
MegaWizard PIUg-INcccoiiiiiiiiiiiiieeices 55
N
NHANAIE ... 44
@)
ONEIOr ... 44
Open Schematic view Dialog Box............. 54, 88, 110
OVEIVIBW ...ttt 3

GX3700 User’s Guide 229

P
PacKing LiSt......cccvcveieeieieieie e 23
Panelcccovvvneiiinnn, 15,17, 18, 19, 21, 24, 45, 177
Panel ADOUL Page.........ccoeiiininiincc e 21
Part / Model NUMDETccovviriiiiicce 23
PaSCAl.....coveiiiiic s 43
PC I 25
PCI Address Decoder Circuit 57,91, 118
Pin ASSIgNMENt........cooviiiiiccecee 49, 83, 105
PLL Wizard Dialog BOX.......cccceevvvrveieienienesieneens 68
PIUG & Play......cooovireiceecece s 29
ProgrammMingcoeveveereeseeseeiesieeseeseeseesreeneeenns 43
Programming
Borland-Delphi.........ccccvvevieiiiieie e 43
Error-Handling........c.ccccevevevviie i 46
ViSUAL....coiiiiii e 43
Programming EXamplesccoceoveriinenninennenn, 46
Programming the GX3700..........ccccoervineneinennenns 43
PXLes 5,7,24, 26,27, 28, 29, 45
PXIESYSEM ..t 26
PXI/PCI Explorer .. 16, 26, 45, 46, 171, 172, 187, 188
PXIESYS.INI ..o 16
PXISYSINI ..ot 16
Q
Quartus 47, 48, 49, 81, 82, 83, 103, 104, 105
R
RAM Wizard Dialog BOX........cccceovrerieininnincnnnn 69
README.TXT ..ooiiiiiiiieiieieeee e 25
Removing a Board...........ccocevveviinincincncsen 29
RESEL ... 46
RPD oo 71,73, 96, 98, 122, 124
S
Safety and Handlingcccocoooeiiieniiin s i
Schematic entry projectc.cccceeveerennnne 51, 85, 107
SChematic VIEW........ccocevevierciiecsiee 54, 88, 110
SEIUP oottt 24,25

230 GX3700 User's Guide

Setup-and-Installation.............ccccccoevvivviviieeiencreneens 23
SOt 16, 24, 27, 29, 45
SOFIWAIE ..o 24
SPECITICAtIONS ...ocveveeiieiicice e 1,13
Specifications

SVF. ., 71,73, 78, 96, 98, 100, 122, 124, 129

Symbol Insert Dialog Box....55, 89, 90, 91, 111, 112,
113, 114, 115, 116, 117, 118

Symbol Properties..........ccccoovvvineniinennn 63, 94, 120
System

(D1 -Tod (o] Y PSS 25
System RequUIremMentsccocvevvveiesieveesiee e 24
T
TaSK FIOWcviviiiiieiece e 52, 86, 108

TCL SCHPL.oeiieceeceee e 49, 83, 105

Testing the Designcccccevveneae 75,79, 101, 126, 130
TTL I/O CONNECLONevvevveiirieieiesienee 149, 150, 151
TTL I/O Connector - Default mode (J1 pins 27 and
28 LOGIC IOW)...c.ooviiciiiiiciieec e 149, 150, 151
Y
Virtual Panel................ 15, 16, 17, 18, 19, 21, 24, 177
Initialize Dialogc.ccovveieiiiiiiiceee 15, 16
VISA 16, 25, 26, 45, 46, 156, 157, 171, 172, 187, 188
VISUALL .. 43
VisUal BASIC.....cvvveieiirieieiieieeee e i, 43
Visual Basic .NETccoovviiiiiiinesenecenece e 43
VisUal CH o ii, 43
"\
WaAITANLY .o i

	GX3700, GXFPGA
User’s Guide
	Safety and Handling
	Warranty
	If You Need Help
	Disclaimer
	Copyright
	Trademarks

	Table of Contents
	Chapter 1 - Introduction
	Manual Scope and Organization
	Manual Scope
	Manual Organization

	Conventions Used in this Manual

	Chapter 2 - Overview
	Introduction
	Features
	Applications
	Board Description
	Architecture
	Memory
	PXI/PXIe and PC Connections
	Inter-FPGA Bus Interface Timing
	DMA FIFO Interface Timing

	Specifications
	Digital I/O Channel
	Expansion Board Interface
	Timing Source
	User FPGA
	Power
	Environmental

	Virtual Panel Description
	Virtual Panel Initialize Dialog
	Virtual Panel Setup Page
	Virtual Panel I/O Page
	Virtual Panel DAQ Page (GX3788)
	Virtual Panel About Page

	Chapter 3 - Installation and Connections
	Getting Started
	Interfaces and Accessories
	Packing List
	Unpacking and Inspection
	System Requirements

	Installation of the GXFPGA Software
	Setup Maintenance Program
	Overview of the GXFPGA Software
	Installation Folders
	Configuring Your PXI System using the PXI/PCI Explorer
	Board Installation
	Before you Begin
	Electric Static Discharge (ESD) Precautions
	Installing a Board
	Plug & Play Driver Installation
	Removing a Board

	GX3701 Connectors
	GX3701 J1 – Flex I/O Connector
	GX3701 J2 – Flex I/O Connector
	GX3701 J3 – Flex I/O Connector
	GX3701 J4 – Flex I/O Connector

	GX3788 Connectors
	GX3788 J1 – Flex I/O Bank A Connector
	GX3788 J2 – Flex I/O Bank D Connector
	GX3788 J3 – Flex I/O Bank B Connector
	GX3788 J4 – Flex I/O Bank C Connector

	Jumpers

	Chapter 4 - Programming the Board
	The GXFPGA Driver
	Programming Using C/C++ Tools
	Programming Using Visual Basic and Visual Basic .NET
	Programming Using Pascal/Delphi
	Programming GXFPGA Boards Using ATEasy®
	Programming Using LabVIEW and LabVIEW/Real Time
	Using and Programming under Linux
	Using the GXFPGA driver functions
	Initialization, HW Slot Numbers and VISA Resource
	Board Handle
	Reset
	Error Handling
	Driver Version

	Programming Examples
	Distributing the Driver

	Chapter 5 - GXFPGA Schematic Entry Tutorial
	Introduction
	Downloading Altera Design FPGA Design Tools
	Create New Project
	Device Selection
	Pin Assignment Setup
	Pin Assignments Table
	Schematic entry project

	Creating Design File with Schematic Entry
	Phase 1: Creating the FPGA design - 32 bit Full Adder
	Components Used
	Schematic view
	Design

	Phase 2: Creating the FPGA Design - 2 to 1 Clock Mux
	Components Used
	Design

	Phase 3: Creating the FPGA Design - 32 bit Dynamic Digital Pattern Sequencer
	Components Used
	Design

	Configure Project to Output SVF and RPD Files
	Compile an Example Project and Build RPD and SVF Files
	Simulating the Design
	Load Gx3700 with SVF File
	Testing the Design
	Adder Testing
	Clock Mux Testing
	Digital Sequencer Testing

	Chapter 6 - GXFPGA Verilog Tutorial
	Introduction
	Downloading Altera Design FPGA Design Tools
	Create New Project
	Device Selection
	Pin Assignment Setup
	Pin Assignments Table
	Verilog project

	Creating Design File with Verilog
	Phase 1: Creating the FPGA design - 32 bit Full Adder
	Components Used
	Top-level Verilog file
	Top-level inputs and outputs

	Phase 2: Creating the FPGA Design - 2 to 1 Clock Mux
	Design

	Configure Project to Output SVF and RPD Files
	Compile an Example Project and Build RPD and SVF Files
	Load Gx3700 with SVF File
	Testing the Design
	Adder Testing
	Clock Mux Testing

	Chapter 7 - GXFPGA VHDL Tutorial
	Introduction
	Downloading Altera Design FPGA Design Tools
	Create New Project
	Device Selection
	Pin Assignment Setup
	Pin Assignments Table
	Schematic entry project

	Creating Design File with VHDL
	Phase 1: Creating the FPGA design - 32 bit Full Adder
	Components Used
	Top-level VHDL file
	Top-level inputs and outputs

	Phase 2: Creating the FPGA Design - 2 to 1 Clock Mux
	Design

	Configure Project to Output SVF and RPD Files
	Compile an Example Project and Build RPD and SVF Files
	Simulating the Design
	Load Gx3700 with SVF File
	Testing the Design
	Adder Testing
	Clock Mux Testing

	Chapter 8 - GX3700 Expansion Boards
	Expansion Board Design Guide
	Mechanical Layout Guide
	Expansion Board Connectors and Electrical Requirements
	P1 Expansion Board Connector Pin Assignment
	GX3701 Expansion Board
	GX3701 Programming
	GX3701 Expansion Board Specification

	GX3702 Expansion Board
	J1 – Flex I/O Bank A Connector
	J2 – Flex I/O Bank B Connector
	J3 – Flex I/O Bank C Connector
	J4 – Flex I/O Bank D Connector
	GX3702 Expansion Board Specification

	GX3788 Expansion Board
	GX3788 Programming
	GX3788 Digital and Analog Multi-Function Expansion Board Specification

	Chapter 9 - Function Reference
	Introduction
	GXFPGA Functions
	GxFpgaDiscardEvents
	GxFpgaDmaFreeMemory
	GxFpgaDmaGetTransferStatus
	GxFpgaDmaTransfer
	GxFpgaGetBoardSummary
	GxFpgaGetBoardType
	GxFpgaGetEepromSummary
	GxFpgaGetDriverSummary
	GxFpgaGetErrorString
	GxFpgaGetExpansionBoardID
	GxFpgaInitialize
	GxFpgaInitializeVisa
	GxFpgaLoad
	GxFpgaLoadFromEeprom
	GxFpgaLoadStatus
	GxFpgaLoadStatusMessage
	GxFpgaPanel
	GxFpgaRead
	GxFpgaReadRegister
	GxFpgaReset
	GxFpgaSetEvent
	GxFpgaUpgradeFirmware
	GxFpgaUpgradeFirmwareStatus
	GxFpgaWaitOnEvent
	GxFpgaWrite
	GxFpgaWriteRegister
	Gx3788Initialize
	Gx3788InitializeVisa
	Gx3788Reset
	Gx3788GetBoardSummary
	Gx3788GetCalibrationInfo
	Gx3788AnalogInGetGroundSource
	Gx3788AnalogInMeasureChannel
	Gx3788AnalogInScanGetChannelListIndex
	Gx3788AnalogInScanGetCount
	Gx3788AnalogInScanGetLastRunCount
	Gx3788AnalogInScanGetSampleRate
	Gx3788AnalogInScanIsRunning
	Gx3788AnalogInScanReadMemoryRawData
	Gx3788AnalogInScanReadMemoryVoltages
	Gx3788AnalogInScanSetChannelListIndex
	Gx3788AnalogInScanSetCount
	Gx3788AnalogInScanSetSampleRate
	Gx3788AnalogInScanStart
	Gx3788AnalogInSetGroundSource
	Gx3788AnalogOutGetOutputState
	Gx3788AnalogOutGetVoltage
	Gx3788AnalogOutReset
	Gx3788AnalogOutSetOutputState
	Gx3788AnalogOutSetVoltage
	Gx3788PioGetPort
	Gx3788PioGetPortChannel
	Gx3788PioGetPortChannelDirection
	Gx3788PioGetPortDirection
	Gx3788PioReadPort
	Gx3788PioReadPortChannel
	Gx3788PioResetPort
	Gx3788PioResetPortChannel
	Gx3788PioSetPort
	Gx3788PioSetPortChannel
	Gx3788PioSetPortChannelDirection
	Gx3788PioSetPortDirection
	Gx3788TriggerGetOutputLevel
	Gx3788TriggerReadInputLevel
	Gx3788TriggerSetOutputLevel

	Index

